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Abstract 

We study how researchers can apply machine learning (ML) methods in finance. We first 
establish that the two major categories of ML (supervised and unsupervised learning) ad-
dress fundamentally different problems than traditional econometric approaches. Then, we 
review the current state of research on ML in finance and identify three archetypes of 
applications: (i) the construction of superior and novel measures, (ii) the reduction of pre-
diction error, and (iii) the extension of the standard econometric toolset. With this taxon-
omy, we give an outlook on potential future directions for both researchers and practition-
ers. Our results suggest many benefits of ML methods compared to traditional approaches 
and indicate that ML holds great potential for future research in finance. 
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1. Introduction 

Artificial intelligence is increasingly entering our day-to-day life with impressive applications: face 

detection enables safe and efficient airport travel, voice recognition allows for seamless communi-

cation with personal assistants on smartphones and smart home devices, and ever more firms are 

using chatbots for quick customer support. Almost everyone interacts with modern artificial in-

telligence many times per day. 

The main technology behind artificial intelligence is machine learning (ML). ML methods enable 

machines to conduct such complex tasks as detecting faces, understanding speech, or answering 

messages. Given the power of ML technology, it is natural to ask whether ML methods can also 

be applied elsewhere. This paper addresses the use of ML to solve problems in finance research. 

Several overview papers indicate the potential of ML in finance. Varian (2014) describes ML as 

an appropriate tool in the economic analysis of big data and presents some ML methods with 

examples in economics. He further hints at potential ML applications in econometrics. Mullaina-

than and Spiess (2017) identify prediction problems as the main use case of ML in economics and 

present different categories of existing and potential future applications. Athey and Imbens (2019) 

illustrate the most relevant ML methods from an econometric perspective. They also provide an 

overview of ML’s potential beyond pure prediction, especially for causality in economic questions. 

While the usage of ML in finance research is still in its infancy, the number of applications that 

exploit the potential of ML has grown tremendously over the last few years. In 2018, the number 

of ML publications more than tripled compared to the yearly average of the years 2010 to 2017. 

In 2019, the increase was already more than fivefold. In 2020, the increase was almost sevenfold, 

and in 2021, there were almost eleven times as many publications using ML than before. Even 

though the universe of ML applications in finance has greatly expanded recently, it is still mostly 

unclear where and how to apply ML to solve research problems in finance.  

The contribution of this paper is threefold. First, we present a high-level primer on ML for finan-

cial economists. We illuminate the different types of ML, their purposes and functionalities, and 

the available methods for each type. Given our focus on finance, we place special emphasis on the 

difference between traditional econometric methods and ML. We also demonstrate the benefits of 

ML over traditional linear methods (particularly for prediction problems) by applying ML to a 
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high-dimensional asset pricing problem in finance. Our introduction allows researchers in the field 

to quickly grasp the essentials of ML that are relevant for applications in finance without assuming 

any prior knowledge of ML. 

Second, we construct a taxonomy of current and future ML applications in finance. Given the 

increasing number of recent studies, earlier classifications do not capture existing applications 

well. We review the up-to-date literature in the field and divide it into three distinct archetypes. 

Our taxonomy allows researchers to better understand the current state of the literature and how 

different contributions relate to each other. Furthermore, it serves as guidance for future ML 

applications in finance. 

Third, we study future prospects of ML applications in finance. We systematically analyze ML 

applications in finance and how their publication success differs by research field (asset pricing, 

corporate finance, financial intermediation, household finance) and application type. Our results 

not only suggest a high potential for ML applications in general but also provide researchers with 

indications of the most promising future directions.  

Traditional econometrics aims to provide causal explanations for economic phenomena by analyz-

ing relationships between economic variables. ML, in contrast, allows researchers to obtain unique 

insights from high-dimensional data. There are two major types of high-dimensional data for 

which ML offers benefits over traditional methods such as linear regression. First, ML can deal 

with high-dimensional, numerical data, that is, data consisting of a high number of variables 

relative to the number of observations. Such high-dimensional data arises if there is a plethora of 

economically relevant variables or if nonlinearities and interaction effects play an important role. 

ML methods leverage the informational content of such data for predictions with small out-of-

sample prediction errors. Second, in contrast to traditional methods, ML allows the exploitation 

of unconventional data (such as text, images, or videos), which are inherently high-dimensional. 

ML methods can extract economically relevant information from such data, which then serves as 

a starting point for further economic analyses.  

ML is strongly related to the concept of big data. Big data consists of a high number of observa-

tions, a high number of variables, or both (Stock and Watson, 2020, p. 515). In general, data with 

a high number of observations improve the accuracy of ML predictions (in a similar way to how 

they improve the precision of parameter estimates of ordinary least squares [OLS] regressions). If 



3 

 

the data exhibit a high number of variables (relative to the number of observations), ML outper-

forms simpler, traditional methods such as linear regression. Applying ML to data with high 

numbers of observations and variables combines both benefits as it can yield high prediction 

accuracy as well as outperformance over traditional methods. 

Based on our review of the finance literature, we classify ML applications into three distinct 

archetypes: (1) construction of superior and novel measures, (2) reduction of prediction error in 

economic prediction problems, and (3) extension of the existing econometric toolset. 

First, researchers can use ML to construct superior and novel measures. For instance, when ap-

plied to exploit unconventional data, the extracted information can serve as a superior or novel 

measure of an economic variable. Superior ML measures may exhibit lower measurement error 

and, therefore, can enable more precise estimates of economic relationships than traditional 

measures can. Novel ML measures enable analyses with previously unmeasurable economic vari-

ables. 

Second, researchers can use ML to reduce prediction error in economic prediction problems. For 

instance, the fundamental problem of pricing financial or real assets is the prediction of adequate 

market prices. Given that a main functionality of ML is prediction, ML methods can provide 

better results than traditional approaches in solving such economic prediction problems.  

Third, researchers can use ML to extend the existing econometric toolset. Econometric tools often 

contain a prediction component. For instance, the first stage of an instrumental variable design is 

effectively a prediction problem. ML methods can enhance such existing econometric tools by 

improving the performance of their prediction component. Furthermore, some ML methods them-

selves directly serve as new econometric tools. For instance, ML-based clustering methods extend 

the set of existing clustering methods from econometrics. 

To demonstrate the benefits of ML over traditional methods at a typical prediction problem, we 

apply ML to real estate asset pricing, which is particularly relevant in the areas of household 
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finance and real estate economics.1 Real estate asset pricing is an inherent high-dimensional prob-

lem due to the large number of property characteristics, nonlinearities, and interaction effects (for 

instance, a kitchen’s marginal value likely interacts with house type, e.g., luxury apartment vs. 

standard single-family house.) We predict real estate asset prices in the German residential hous-

ing market using various ML methods (which exploit the large number of individual property 

characteristics in our dataset) and compare their accuracy with estimates from traditional hedonic 

pricing (linear regression with the OLS estimator). Figure 1 illustrates our key results. The two 

charts compare the actual property prices with the OLS estimates (chart on the left) and with 

the price predictions of our best-performing ML method (chart on the right, boosted regression 

trees). On average, the price predictions from the ML approach are much closer to the actual 

prices than the OLS estimates. The difference in pricing accuracy is especially pronounced at the 

upper end of the price range: while the OLS estimates show large deviations from the actual 

prices, the ML-based price predictions are much closer.  

In the final part of our paper, we conduct a bibliometric analysis and examine the publication 

success of articles published in major finance journals during the 2010–2021 period. Specifically, 

we address the following questions: (1) How important is ML as a novel methodology for research 

in finance? (2) What is the methodological purpose of ML (beyond prediction) in its applications 

for research in finance? (3) How do these findings differ across the various subfields in finance?  

We find that although ML is a relatively new method in finance research, it has already found 

broad acceptance in the scientific community. The share of ML papers has grown in recent years 

and accounts for approximately 3%–4% of the publications in the top three finance journals (The 

Journal of Finance, Journal of Financial Economics, The Review of Financial Studies) in 2021. 

This share is similar for somewhat lower-ranked journals. Furthermore, our analysis reveals that 

the two main areas of finance – financial markets/asset pricing and banking/corporate finance – 

leverage the potential of ML in fundamentally different ways. While the literature in the field of 

financial markets/asset pricing tends to apply ML to economic prediction problems, most publi-

cations in the fields of banking and corporate finance use ML to construct superior and novel 

                                         

1 Our exemplary application cannot yield generalizable results about the performance of ML compared to traditional 
methods, but illustrates how to apply ML to a typical problem in finance with high-dimensional data. 
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measures. Interestingly, publications in the highest-ranked journals use ML disproportionally of-

ten to construct superior and novel measures. This effect is especially large within the fields of 

banking and corporate finance. Our results indicate a particularly large potential of applying ML 

to unconventional data to construct superior and novel measures for topics related to financial 

institutions and corporate finance. 

Overall, our results suggest a promising future for ML applications in finance. The many benefits 

of ML over traditional econometric methods, the strong and consistent increase in the number of 

ML publications in the last few years, and the widespread usage of ML by studies published in 

the highest-ranked journals of the profession leave little reason to expect otherwise.2 

Our paper is related to a growing literature focused on ML applications in finance. For instance, 

there is a small number of finance textbooks that either survey specific areas of finance in which 

ML techniques have recently emerged (e.g., Nagel, 2021, for asset pricing; De Prado, 2018, for 

asset management) or provide mathematical foundations for ML in quantitative finance (e.g., 

Dixon, Halperin, and Bilokon, 2020). The aim of these important contributions is to show how to 

carefully adapt ML techniques and how to deal with the specific characteristics of certain subfields 

in finance – with a particular focus on financial markets. Our perspective on ML is clearly different 

from the ones used in these important contributions as our interest lies in detecting promising 

ML applications beyond (prediction problems in) financial markets. We also add to a small num-

ber of survey papers that review the applications of ML in finance. These studies differ from ours 

in their use of classification techniques, scope, and focus. One group of surveys uses (mostly) 

automated techniques, such as textual analysis (Aziz et al., 2022) or citation-based approaches 

(Goodell et al., 2021), to classify ML applications across all finance subfields into application areas 

(such as risk forecasting or financial fraud). Another group of surveys adopts a more selective 

perspective and manually reviews either ML applications in certain subfields of finance, such as 

risk management (Aziz and Dowling, 2019), or applications of specific ML methods, such as deep 

learning (Ozbayoglu, Gudelek, and Sezer, 2020). Our study differs from these studies, which focus 

                                         

2 ML has received considerable attention not only from finance academia but also from practitioners. Table A1 in the 
Appendix presents a selection of public announcements of large institutions (such as banks, insurance companies, and 
asset management firms) that make use of ML in their day-to-day business operations (e.g., HSBC and Deutsche Bank 
apply ML to predict and detect fraudulent transactions). These practice use cases mostly center around prediction 
problems (the second archetype in our taxonomy). 
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on application areas (i.e., where ML is applied), in that we classify the literature based on the 

methodological purpose of ML in finance (i.e., how ML is applied). This somewhat different angle 

– based on our novel taxonomy – allows us to uncover a frequently overlooked (but promising) 

group of ML applications in finance: While many of the existing surveys (tend to) focus on ML 

for prediction purposes, we show that two other types of ML applications are gaining importance: 

the construction of superior and novel measures and the extension of the existing econometric 

toolset for finance research. Furthermore, we also manually review all these ML papers instead of 

relying on automated techniques that might miss important context. Additionally, to the best of 

our knowledge, none of the existing reviews examines ML applications in finance with a biblio-

metric performance analysis based on the publication success of existing work by research field 

and methodological purpose.  

The remainder of this paper is organized as follows. Section 2 gives a high-level introduction to 

ML together with an illustrative application of ML to a typical problem in finance. In Section 3, 

we present the three archetypes of ML applications and review the corresponding literature. Sec-

tion 4 outlines the most promising future directions for applying ML in finance. Section 5 con-

cludes the paper. 

2. Fundamentals of ML 

In this section, we provide a primer of ML to lay the groundwork for subsequent chapters. Our 

focus is on the mechanics of the different types of ML, the problems for which ML has proven to 

be well suited for solving, and the methods with widespread use in the finance literature. We also 

emphasize the differences between ML and traditional econometric methods. 

Most studies in empirical finance aim at analyzing economic relationships between economic var-

iables. A typical example is an analysis of how certain factors affect the capital structure or how 

regulatory changes affect the expectations of economic agents. Traditional econometric methods 

provide estimates 𝛽 ̂for the direction and strength of these factors. 

ML, in contrast, serves different purposes. Instead of providing direct insights into the relation-

ships between economic variables, ML tends to serve as a method for prediction or for data 

structure inference. Methods for prediction take the given observations to infer estimates for the 

dependent variable 𝑦 ̂of new observations based on their covariates 𝑋. For instance, the observed 
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prices and property characteristics in the real estate market could be used to predict the prices 

of previously unobserved properties based on their characteristics. The first major type of ML, 

supervised learning, encompasses methods to make such predictions (see Section 2.1). 

Methods for data structure inference derive structural information from given data 𝑋. A typical 

example is the identification of clusters in the data to learn how different observations relate to 

each other. The second major type of ML, unsupervised learning, comprises such methods to arrive 

at structural information from data (see Section 2.2). 

Table 1 gives an overview of the differences between traditional econometrics and these two major 

types of ML, supervised and unsupervised learning. Most importantly, the three approaches serve 

different purposes. As explained above, traditional econometrics aims at extracting economic re-

lationships (Samuelson and Nordhaus, 2009, p. 5) and thus solves so-called 𝛽-̂problems (Mullain-

athan and Spiess, 2017). Supervised learning provides predictions; thus, it is mainly intended to 

solve so-called 𝑦-̂problems (Mullainathan and Spiess, 2017). Unsupervised learning infers the data 

structure from given data without a special 𝑦-variable; thus, it solves 𝑋-problems. 

The three approaches also differ with regard to their general methodology. Every approach makes 

use of data. In traditional econometrics, there is a dependent variable 𝑦 and multiple independent 

variables 𝑋. In ML jargon, such data are called “labeled data”, as there is a special label 𝑦 for 

each observation (which is the dependent variable 𝑦 in regression jargon). The dominant method 

in traditional econometrics is linear regression, mainly due to its flexibility and interpretability. 

Linear regression with the OLS estimator provides an explanatory model in the form of a regres-

sion line and different metrics of statistical significance, such as t-values and p-values. Finally, 

these results can indicate causal relationships between economic variables. 

Supervised learning also relies on labeled data. The special label 𝑦 represents the target variable 

to be predicted based on the predictor variables 𝑋. Applying a supervised ML method on the 

given data yields a prediction model as well as estimates for its expected prediction performance. 

The prediction model can then be used to make out-of-sample predictions, that is, predictions of 

the value of the target variable of previously unobserved examples based on their characteristics. 

Unsupervised learning relies on unlabeled data, which is the defining distinction between unsu-

pervised and supervised learning in the literature (Hastie, Tibshirani, and Friedman, 2009, pp. 
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485–486). Unlabeled data means that there is no label 𝑦 (i.e., no dependent variable 𝑦 in regression 

jargon); all variables are considered “equal”. Applying an unsupervised ML method to the given 

data yields a data structure model and data structure characteristics. Finally, both results can be 

used to infer structural information from the data.3  

In the following sections, we describe the two major categories of ML – supervised and unsuper-

vised learning – in more detail and give an overview (whose coverage is naturally selective) of the 

relevant methods for each category.  Then, we provide an illustrative application of ML to a 

typical problem from the field of household finance: the prediction of real estate prices. Finally, 

we discuss limitations, caveats, and drawbacks of ML. 

2.1 Supervised Learning 

Supervised learning aims at making out-of-sample predictions with high prediction performance. 

To accurately assess the expected prediction performance on previously unseen observations, the 

given data are divided into training data and test data. Then, a supervised ML method is applied 

to the training data to build a prediction model. Finally, applying the prediction model to the 

test data yields an estimate of the expected out-of-sample prediction performance. 

To build a prediction model, various supervised ML methods of differing complexity have been 

developed. In general, more complex methods tend to enable higher prediction performance but 

reduce interpretability. Figure 2 gives an overview of common methods of supervised ML arranged 

by typical prediction performance and interpretability.  

The simplest method is linear regression with the OLS estimator. OLS provides excellent inter-

pretability. However, its out-of-sample prediction performance has turned out to be generally 

weak. One way to improve the prediction performance of the linear OLS model would be to add 

nonlinear transformations and interactions of the original predictor variables to the model speci-

fication. In many cases, however, it is ex ante unclear which nonlinearities and interactions are 

actually relevant. Including all possible combinations is generally difficult since it results in an 

                                         

3 While supervised and unsupervised learning are arguably the most important categories of ML, there also exist other 
categories of ML that are less common but relevant for specific applications: reinforcement learning for sequential 
decision problems (Sutton and Barto, 2018), semi-supervised learning for problems with mostly unlabeled training data 
(Zhu, 2005), and active learning for problems with costly training data (Settles, 2009). 
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exorbitant number of variables that can quickly exceed the number of observations. In many cases, 

the sheer size of the resulting datasets would also lead to computational problems. 

Since OLS (under certain conditions) is the best linear unbiased estimator (BLUE), one way that 

has been proposed to improve the prediction performance is to allow for bias. In contrast to 

explanation problems, prediction problems aim to achieve maximal prediction performance; thus, 

they do not require unbiasedness of variable coefficients. Regularized linear methods offer a way 

to systematically introduce bias to improve OLS prediction performance (Hastie, Tibshirani, and 

Friedman, 2009, pp. 61–79). More specifically, regularization means that such methods shrink the 

coefficients of the predictor variables to increase prediction performance.4 The most common 

method for regularized linear regression is the least absolute shrinkage and selection operator 

(LASSO). LASSO works similarly to OLS but introduces bias by adding a penalty term in its 

optimization function to penalize large variable coefficients with little informational content. The 

specific functional form of the penalty term drives irrelevant coefficients to zero. Hence, LASSO 

is often used for variable selection in addition to pure prediction and also provides relatively good 

interpretability. 

In addition to LASSO, there are other regularized linear methods that differ with regard to the 

functional form of the penalty term. Ridge regression uses a penalty term that does not drive 

coefficients to exactly zero and is therefore less interpretable. However, ridge regression often 

provides superior prediction performance compared to LASSO. Elastic net regression combines 

the two methods (Zou and Hastie, 2005). Its penalty term is a linear combination of the penalty 

terms of LASSO and ridge regression to incorporate their respective strengths. 

In contrast to the linear methods just discussed, more complex ML methods automatically con-

sider relevant nonlinearities and interaction effects. For numerical data, tree-based ML methods 

are widespread (Hastie, Tibshirani, and Friedman, 2009, pp. 305–334). The simplest tree-based 

method is the decision tree, which also acts as the building block of all other tree-based methods. 

Panel A in Figure 3 depicts a simplified decision tree trained for house price prediction. It consists 

of nodes at which the tree splits depending on the value of a certain predictor variable. Decision 

                                         

4 The introduction of bias can increase prediction performance because of the bias-variance tradeoff. See, for instance, 
Hastie, Tibshirani, and Friedman (2009, pp. 37–38, 219–228) for technical details. 
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trees typically contain multiple layers of nodes, so they implicitly consider interactions between 

multiple variables. When the tree reaches a leaf node, that is, a node after which there is no 

further split, the tree returns a prediction value. Given that the relevant predictor variables and 

thresholds are directly observable in the splits, decision trees are characterized by relatively high 

interpretability.5 

Random forests combine multiple decision trees (Breiman, 2001). More specifically, the random 

forest method repeatedly draws bootstrap samples from the given data and builds a separate 

decision tree from each sample. The prediction of a random forest is then the average prediction 

value of the different trees. Random forests typically achieve much higher prediction performance 

than single decision trees but are inherently less interpretable. 

Boosted regression trees extend the concept of random forests to further improve their prediction 

performance (Hastie, Tibshirani, and Friedman, 2009, pp. 353–358). Instead of combining many 

independent decision trees, the boosted regression tree method builds the trees iteratively and 

considers which observations the previous trees could not predict well. Boosted regression trees 

typically not only outperform random forests but are often among the winning algorithms in data 

science competitions, which highlights their state-of-the-art prediction performance level. 

While tree-based ML methods and, in particular, boosted regression trees achieve state-of-the-art 

prediction performance with numerical data, neural networks often excel with unconventional 

data such as text, images, or videos. Panel B in Figure 3 depicts a small neural network. A neural 

network consists of two components: neurons (arranged in so-called layers) and links between 

neurons (Hastie, Tibshirani, and, Friedman, 2009, pp. 389–415). The links describe the flow of 

data between the neurons. First, a neural network’s input layer receives the predictor variables, 

for instance, pixel-level image data. Then, the hidden layers iteratively process the data and 

deliver them to the output layer, which returns the final prediction value. In its most basic version, 

a neuron first calculates a weighted sum of the data that arrive from the neurons of the previous 

layer (the weights are determined endogenously during the training process). Then, it applies a 

non-linear function (e.g., a logistic function) to this weighted sum. Finally, the neuron sends the 

                                         

5 For more details on decision trees, see, for example, Loh (2011). 
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result of this calculation to all neurons of the next layer to which it is connected. The number of 

layers, the number of neurons in each layer, the links between neurons, and the functional forms 

of the non-linear functions are (exogenously) specified by the designer of the neural network and 

depend on the given problem. Neural networks used in real applications can be very large with 

many hidden layers and thousands of neurons and links. Furthermore, they do not have to be 

fully connected, so not every neuron of a layer necessarily needs to forward its output to every 

neuron of the next layer. Various architectures have been proposed to build neural networks. One 

of the simplest architectures is the feed-forward network: neurons come in their most basic variant, 

and no backlinks exist so that data simply flow from left to right.6 Due to their high complexity, 

neural networks are inherently difficult to interpret. In general, very little information can be 

inferred from the hidden layers, which represent the learned knowledge of a neural network. Im-

proving the interpretability of neural networks is subject to ongoing research in computer science. 

In addition to the methods just discussed, there are older ML methods that (compared to newer 

methods) typically achieve worse prediction performance and/or provide lower interpretability, 

such as the naïve Bayes method (Rish, 2001), which uses Bayes’ theorem to classify observations 

into categories, or support vector machine (SVM) methods (Hastie, Tibshirani, and Friedman, 

2009, pp. 417–455). We refer the interested reader to the mentioned literature for more details on 

these methods.  

2.2 Unsupervised Learning 

The purpose of unsupervised learning is data structure inference. Since the data structure sub-

sumes many different types of information, we divide the methods of unsupervised learning into 

                                         

6 Advanced neural networks employ more complex neurons and architectures. Recurrent neural networks (RNNs) are 
designed for sequential data such as text (Medsker and Jain, 2001). The special architecture of RNNs allows hidden-
layer neurons to accumulate information over multiple related observations (for instance, words in a sentence). There 
are different possibilities for designing this information storage mechanism. Widespread design examples are gated 
recurrent units (GRU) and long short-term memory (LSTM). Convolutional neural networks (CNNs) are another type 
of advanced neural networks whose general architecture fits well with visual data such as images and videos (Albawi, 
Mohammed, and Al-Zawi, 2017). Simply put, their hidden layers represent trainable filters that iteratively detect 
increasingly complex structures. The architecture of CNNs is typically highly customized toward a specific application. 
Adequately designed CNNs show outstanding performance for tasks such as face detection or general image recognition. 
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different subcategories. The two most common subcategories in unsupervised learning are clus-

tering and dimensionality reduction.  

In clustering, observations are grouped in a way that results in high within-group similarity and 

low cross-group similarity. Various kinds of clustering methods have been proposed. First, cen-

troid-based methods form clusters by arranging the observations around multiple central points 

(so-called centroids). After the initial positioning of the centroids, iterative updates of their posi-

tion yields increasingly suitable clusters. A common example of a very early but still heavily used 

centroid-based method is K-means (MacQueen, 1967). Second, density-based methods build clus-

ters depending on the differing density in the space of observations. In other words, they group 

observations with many similar observations nearby into clusters. An example of a density-based 

clustering method is DBSCAN from Ester et al. (1996), which is also one of the most widely 

applied clustering methods. Third, distribution-based methods assign observations to clusters 

based on whether they likely belong to the same statistical distribution. Hence, these methods 

require knowledge of the distribution of the underlying data process in advance. For normally 

distributed data, Gaussian mixture models are widespread (Rasmussen, 1999). Finally, hierar-

chical methods construct clusters that consider the hierarchical relationship in the data. They 

start with initial clusters, where each cluster consists of a single observation. Then, they iteratively 

combine smaller clusters into larger clusters to build a hierarchy. A common method for hierar-

chical clustering is BIRCH (Zhang, Ramakrishnan, and Livny, 1996).  

Dimensionality reduction aims at increasing the information density of the given data by decreas-

ing their dimensionality while retaining most of the inherent information. There are various meth-

ods for dimensionality reduction, of which we cover only the two most common ones. First, meth-

ods based on principal component analysis (PCA) derive linear combinations of the original vari-

ables (“principal components”) that cover as much of the data’s variance as possible. While the 

basic variant of PCA is inherently linear, nonlinear generalizations also exist. For more details on 

the different PCA-based methods, see, for instance, Hastie, Tibshirani, and Friedman (2009, pp. 

534–552). Second, methods based on neural networks reduce dimensionality with special architec-

tures. A widely used method is the autoencoder neural network (Goodfellow, Bengio, and Cour-

ville, 2016, pp. 499–523). An autoencoder consists of an encoder network that creates a condensed 

representation of the input data and a subsequent decoder network that reconstructs the original 
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data from the condensed representation. A special bottleneck layer connects the encoder and 

decoder networks to train them on given data. If the autoencoder is able to reconstruct the 

original data well, then the condensed data representation in the bottleneck layer has successfully 

retained most of the information in the data while reducing its dimensionality. 

In addition to clustering and dimensionality reduction, further subcategories of unsupervised 

learning exist but are (to date) used somewhat less often for applications in finance. Association 

rule mining tries to identify relations between variables (Agrawal, Imieliński, and Swami, 1993). 

For instance, it can learn from customer purchase data which products are often bought together. 

Outlier detection tries to find observations that substantially differ from the remaining data. While 

many traditional methods for outlier detection exist, ML-based methods often provide superior 

performance, especially in high-dimensional settings (Domingues et al., 2018). Methods in syn-

thetic data generation try to generate new data that satisfy certain requirements. Generative 

adversarial networks, for instance, use neural networks to create new, synthetic data that closely 

mimic the given training data (Goodfellow et al., 2020). Their neural network architecture makes 

them especially useful for unconventional data, for example, to create artificial images that are 

similar to existing images.  

2.3 Application: Real Estate Price Prediction 

To illustrate the differences between ML methods and more traditional approaches, we now apply 

ML to the problem of real estate price prediction. The prediction of real estate prices is a partic-

ularly good example to illustrate the benefits of ML to solve problems in finance for three reasons. 

First, real estate is one of the most important asset classes in the economy. In the United States, 

the total value of real estate assets is comparable to the size of the equities and fixed income 

markets combined. For most households, real estate is the greatest source of wealth. The Global 

Financial Crisis in 2007/2008 exemplified how spillover effects from the real estate sector can 

destabilize economies around the world. Consequently, the reduction of prediction errors in the 

area of real estate pricing is of particular economic importance. Second, real estate assets show a 

high level of heterogeneity (each property is unique), which makes real estate pricing challenging. 

Third, the high number of property characteristics variables as well as potentially relevant non-

linearities and interaction effects makes real estate pricing an inherently high-dimensional prob-

lem, where ML provides unique benefits over traditional methods. The traditional approach to 
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derive price estimates for individual properties is hedonic pricing. Hedonic pricing first regresses 

the property characteristics on the observed property prices with OLS to obtain a linear pricing 

model. Then, this model can produce price estimates for new, previously unobserved properties. 

It is also possible to interpret the regression coefficients as the characteristics’ shadow prices. 

However, hedonic pricing relies on an inherently linear model and therefore does not directly 

consider nonlinearities and interaction effects. For instance, we can assume relevant interactions 

between lot size and location: an additional m² in lot size for a property in a city center is likely 

worth more than in a suburb. While we could manually add such specific effects to the linear 

model, there may exist a plethora of unknown nonlinear and interaction effects. By ignoring these 

effects, the linear model of hedonic pricing potentially leaves important information contained in 

the data unexploited. ML methods, in contrast, automatically consider nonlinearities and inter-

actions. Therefore, supervised ML can potentially generate price predictions that exhibit lower 

pricing error than the linear model from hedonic pricing. In the following, we study whether and 

how ML provides superior price estimates for individual real estate assets. 

We exploit a comprehensive collection of more than four million residential real estate listings in 

Germany between January 2000 and September 2020 from the five major real estate online plat-

forms and major newspapers.7 The dataset contains offer prices and all relevant individual prop-

erty characteristics (floor area, number of rooms, construction year, location, lot size, etc.). We 

use these data to train different ML models for the prediction of individual property prices and 

compare these models with the linear OLS model from hedonic pricing. Panel A in Figure 4 shows 

the key result of our analysis.8 ML methods strongly improve the accuracy of price predictions 

over the OLS baseline. Our best-performing ML method, boosted regression trees, dramatically 

increases out-of-sample R2 to 77%, compared to 40% for OLS; thus, it almost doubles the amount 

of explained price variation. On average, the predictions from boosted regression trees deviate 

from the actual prices by approximately 27%, compared to 44% for OLS. In monetary terms, the 

superior prediction performance of boosted regression trees corresponds to an average pricing 

error of approximately 94,000 EUR, compared to 176,000 EUR for OLS. Since the mean property 

                                         

7 According to the data provider, the dataset covers more than 95% of the public listings during the given period. 

8 See the Online Appendix for more details on the sample and our methodology. 
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price in our sample is 393,000 EUR, the improvements in pricing accuracy from ML are not only 

statistically significant but also economically large. 

While the improvements in pricing accuracy induced by ML are already impressive on average, 

their benefits become even more pronounced at the upper end of the price range. Panel B in 

Figure 4 depicts the prediction performance of the best-performing ML method, boosted regres-

sion trees, compared to that of OLS in the five property price quintiles. The boosted regression 

trees method outperforms OLS in all quintiles. While OLS performs worst at the extremes of the 

price range, ML is especially useful in reducing the pricing error for the most expensive properties. 

In the highest price quintile, the boosted regression trees method lowers the average pricing error 

to 24%, compared to 50% for OLS. In monetary units, the superior prediction performance of 

boosted regression trees relative to that of OLS corresponds to a reduction in the average pricing 

error by more than 240,000 EUR in the highest price quintile. Given that the average property 

price in the top quintile is approximately 884,000 EUR, the improvements in pricing power from 

ML are dramatic. Our results indicate that nonlinearities and interaction effects are relevant in 

real estate pricing and especially important for the most expensive properties. 

Our results demonstrate the benefits of using ML to reduce the prediction error in economic 

prediction problems. ML can yield a statistically and economically significant reduction in pre-

diction error compared to traditional linear regression with OLS in addressing the problem of real 

estate price prediction. The already large benefits of ML on average further increase for assets at 

specific price ranges. Hence, ML methods not only improve prediction accuracy in general but 

also especially for observations where traditional approaches struggle.9 

                                         

9 Our real estate asset pricing example is primarily meant to illustrate the advantages of ML over traditional methods 
for a problem with high-dimensional data. Nevertheless, it represents (to the best of our knowledge) the first application 
of ML to real estate pricing for an entire major economy, spanning a comprehensive dataset of all real estate listings – 
both, online and offline – for a sample period of more than 20 years. Our dataset contains more than four million 
observations, which far exceeds the scale of prior work. Most existing studies in the real estate asset pricing literature 
apply ML to predict individual house prices in narrow regions within different countries, such as the United States 
(Park and Bae, 2015; Mullainathan and Spiess, 2017; Pérez-Rave, Correa-Morales, and González-Echavarría, 2019), 
France (Tchuente and Nyawa, 2022), Spain (Rico-Juan and Taltavull de La Paz, 2021), the Netherlands (Guliker, 
Folmer, and van Sinderen, 2022), Turkey (Erkek, Cayirli, and Hepsen, 2020), Hong-Kong (Ho, Tang, and Wong, 2021), 
and Colombia (Pérez-Rave, Correa-Morales, and González-Echavarría, 2019). In addition to predicting individual real 
estate prices, a small group of studies uses ML to predict the general price level in the real estate market (Yu et al., 
2021; Milunovich, 2020). 
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2.4 Limitations, Caveats, and Drawbacks of ML 

While the results from our illustrative application of ML to real estate asset pricing show the 

benefits of ML over traditional methods for problems with high-dimensional data, there also exist 

limitations, caveats, and drawbacks of using ML. In the following, we discuss three important 

aspects in detail. 

First, ML methods tend to exhibit low interpretability. While ML models can produce predictions 

with low prediction error, it is often not directly observable how the algorithm has generated its 

results. Hence, ML is generally not suited for problems that require a deep understanding of the 

economic determinants of the prediction target. Nevertheless, the quickly advancing field of inter-

pretable ML tries to offer solutions to the model interpretability problem with several kinds of 

approaches (see, for instance, Burkart and Huber, 2021, for an overview of the available methods). 

Second, ML generally requires large datasets. Datasets can be large in two dimensions: the number 

of relevant variables and the number of observations. ML offers benefits over traditional methods 

for prediction tasks if the number of relevant variables is large relative to the number of observa-

tions. At the same time, ML usually provides good prediction performance only if there is a high 

number of observations on which an ML model can be trained. Unfortunately, large-scale data 

are not always available for many research questions in finance. In some cases, using ML models 

that have already been pre-trained with large amounts of comparable data can solve this problem. 

Such pre-trained models exist for many common ML tasks, such as textual analysis or face recog-

nition, so researchers can directly apply them to the problem at hand independent of the amount 

of available data. In addition, the general trend toward increasing data collection in all aspects of 

life should more and more alleviate the data problem. 

Finally, using ML often has high computational costs. Compared to traditional methods such as 

linear regression, training ML models requires significantly more time and computing power. The 

problem typically becomes worse with more sophisticated ML methods. In particular, neural net-

works with complex architectures typically have the highest computational costs. As a result, 

using cloud computing services often becomes necessary to deal with this problem.  
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3. Taxonomy of ML Applications in Finance 

An increasing number of finance papers that use ML in at least some part of their study go on to 

be published. However, many researchers are still unaware of how and where to apply ML in the 

field of finance. In this section, we present a taxonomy of existing ML applications, which serves 

multiple purposes. First, it outlines where ML can add value in finance research. Second, it pro-

vides a systematic overview of existing ML applications in the field of finance. Third, it enables a 

better understanding of new contributions and how they relate to the existing literature. Finally, 

it may guide researchers in discovering possible applications and thus may facilitate new ML 

studies in finance. 

As explained above, ML solves different problems compared to traditional econometric methods. 

The workhorse model of finance research, linear regression with OLS, has one major objective: 

identification of causal relationships between economic variables to explain economic phenomena. 

In contrast, ML provides predictions that minimize prediction error or infers structural infor-

mation from given data. 

To survey the ML literature in finance, we first identify ML-related papers in major journals in 

finance, the NBER working paper series, and the Financial Economics Network of the SSRN 

preprint repository; then, we search for ML method names and their variations (e.g., LASSO, 

random forest, etc., see Section 2). We study these papers and categorize the ML research strat-

egies in these papers into the following three distinct archetypes:  

(1) Construction of Superior and Novel Measures:    𝑦 = 𝛽𝑿 + 𝜀 

(2) Reduction of Prediction Error in Economic Prediction Problems: 𝒚ෝ = 𝑓(𝑋) 

(3) Extension of the Existing Econometric Toolset:   𝑦 = 𝛽𝑋 + 𝜀   &   𝑴𝑳 

Studies of the first archetype use ML to construct a superior or novel measure for one of the 

independent variables 𝑋. The main analyses of these papers still largely rely on a traditional 

(linear) model, which is estimated, e.g. with OLS. Studies of the second archetype use ML to 

reduce the prediction error of predictions 𝑦 ̂ in economic prediction problems. Supervised ML 

methods achieve superior prediction performance by using flexible functional forms 𝑓(∗) in the 

prediction model. Studies of the third archetype use ML to extend the existing econometric tool-

set. ML methods either serve as new econometric methods themselves or optimize some part of a 
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traditional econometric method. In the following subsections, we review the literature related to 

each of the three archetypes of ML applications in finance in detail.10 

3.1 Construction of Superior and Novel Measures 

The first archetype of ML applications in finance is the construction of superior and novel 

measures. Studies of this archetype use ML to extract information from high-dimensional, uncon-

ventional data such as text, images, or videos and construct a numerical measure of an economic 

variable. For textual data, traditional approaches use word counts based on domain-specific dic-

tionaries.11 For image and video data, only human assessments have been available for a long time. 

ML-based approaches provide easier and, at the same time, more powerful access to the infor-

mation contained in unconventional data. All types of ML methods are applicable: predictions 

from supervised learning, data structure information from unsupervised learning, and results from 

other types of ML can be used to construct measures of economic variables. 

The superior or novel measure finally serves as an independent variable in the main analysis of 

an economic relation. Using superior measures (i.e., with lower measurement error than existing 

measures) reduces attenuation bias, which leads to more precise estimates of the parameters de-

scribing an economic relationship. Novel measures enable new analyses with previously unmeas-

urable economic aspects. In the main analysis, most studies that construct ML-based measures 

apply traditional econometric methods such as linear regression with OLS. 

Table 2 presents a selection of studies that use ML to construct superior or novel measures. In 

the following, we present them in three categories: (1) measures of sentiment, (2) measures of 

corporate executives’ characteristics, and (3) measures of firm characteristics. 

                                         

10 Given the quickly evolving nature of the field, our review is necessarily selective regarding some ML applications. For 
instance, we may not consider important papers outside of the “standard” finance domain, such as genuine computer 
science papers that apply ML to specific finance problems. Finally, our manual review is to a certain degree subjective, 
especially compared to automated review techniques (such as textual analysis [Aziz et al., 2022] or citation-based 
approaches [Goodell et al., 2021]). 

11 See Loughran and McDonald (2016) for an overview of mostly traditional text analytics methods in accounting and 
finance. 
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3.1.1 Measures of Sentiment 

Measures of sentiment describe beliefs of people, usually on a positive–negative scale. Most studies 

in this subcategory construct measures of sentiment from textual data. There are multiple ap-

proaches to construct a one-dimensional (positive vs. negative) measure of sentiment from textual 

data. Loughran and McDonald (2011) present a dictionary approach to derive sentiment from 

financial texts. More specifically, they count negative words based on a finance-specific word list. 

Dictionary approaches, however, miss the context of words within a sentence (Loughran and 

McDonald, 2016). In contrast, flexible ML-based approaches can consider not only the context of 

words within a sentence but also how different sentences interrelate with each other. For an ex-

tensive review of sentiment with traditional econometric and ML-based approaches, see Algaba 

et al. (2020). 

Sentiment exists for many topics and is derived from many sources. In finance, our interest mainly 

lies in the aggregate sentiment of markets such as the stock market, which is the most common 

target of ML-based measures of sentiment. The majority of the relevant studies use measures of 

sentiment for stocks to study their effect on future stock returns and various financial reporting 

numbers. 

There are multiple studies that construct a measure of investor sentiment from social media. 

Antweiler and Frank (2004) use the ML methods naïve Bayes and SVM to classify user posts on 

the Yahoo Finance message board as positive or negative. Then, they aggregate their classifica-

tions to construct a measure of stock market sentiment. Renault (2017) similarly classifies user 

posts on the finance-focused social network StockTwits to construct a measure of investor senti-

ment. Vamossy (2021) also relies on StockTwits but measures investor emotions by extracting 

different emotional states from user posts with textual analysis based on deep learning. The 

studies by Sprenger et al. (2014), Bartov, Faurel, and Mohanram (2018), Giannini, Irvine, and 

Shu (2018), and Gu and Kurov (2020) derive investor sentiment from user posts on Twitter. Liew 

and Wang (2016) also apply ML to extract sentiment information from Twitter but for pre-IPO 

sentiment.  

In addition to social media, news articles are another source of sentiment for stocks. Barbon et 

al. (2019) enhance the naïve Bayes method to build a sentiment variable based on firm-specific 

news. Ke, Kelly, and Xiu (2019) implement a customized ML-based approach that specializes in 
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extracting information relevant for stock returns. Their method then allows them to extract a 

measure of sentiment for stocks from Dow Jones Newswire articles. Similarly, Boudoukh et al. 

(2019) also analyze Dow Jones Newswire articles but focus on the saliency of firm-specific news. 

Manela and Moreira (2017) deviate from the traditional measures of sentiment that use a positive–

negative scale. Instead, they construct a measure of stock market uncertainty from Wall Street 

Journal front-page articles. Von Beschwitz, Keim, and Massa (2020) study how ML-based news 

analytics (i.e., computer algorithms that investors use to interpret financial news) affect stock 

prices, trading volumes, and liquidity. Calomiris and Mamaysky (2019) use ML to measure senti-

ment from country-level news articles and study how it affects returns and volatilities. In addition 

to the analysis of text, Obaid and Pukthuanthong (2022) apply ML to news photos to derive a 

measure of sentiment for stocks and find that it can act as a substitute of text-based measures.  

Other studies use analyst reports or annual reports for measures of sentiment. Huang, Zang, and 

Zheng (2014) apply the naïve Bayes method to analyst reports to construct a measure of stock 

sentiment. Azimi and Agrawal (2021) apply deep learning methods to 10-Ks to measure sentiment 

and study its effect on abnormal returns and trading volumes. 

While most studies that construct ML-based measures of sentiment consider sentiment for stocks, 

Cathcart et al. (2020) study sentiment for sovereign debt markets. More specifically, they leverage 

news sentiment information from Thomas Reuters News Analytics to investigate the impact of 

media content on sovereign credit risk. 

Beyond sentiment for financial markets, two studies examine sentiment for products. Tang (2018) 

uses a commercial service to create a measure of consumer sentiment based on Twitter posts. The 

subsequent main analysis studies the effect of consumer sentiment on firm sales. Nauhaus, Luger, 

and Raisch (2021) construct a measure of expert sentiment from articles concerning specific tech-

nology domains and then study how it affects firms’ capital allocation among the business units 

engaged in these domains. 

3.1.2 Measures of Corporate Executives’ Characteristics 

The prominent role of a firm’s leadership and its large implications has led to a vast amount of 

finance literature that studies various aspects of corporate executives. Related to this stream of 
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the literature, ML enables the construction of superior and novel measures of executives’ charac-

teristics. While most measures in this category rely on textual data, there are also some studies 

that construct measures from analyzing images and videos. 

Multiple studies construct ML-based measures of executives’ personality traits. Gow et al. (2016) 

use ML to extract CEOs’ Big Five personality scores (agreeableness, conscientiousness, extraver-

sion, neuroticism, and openness to experience) from the Q&A part of conference call transcripts. 

Then, the authors use the extracted scores to analyze the effect of personality on financing choices, 

investment choices, and operating performance. Similarly, Hrazdil et al. (2020) determine the Big 

Five personality scores of CEOs and CFOs by using the commercial service IBM Watson Person-

ality Insights. From these scores, they construct a novel measure of executives’ risk tolerance to 

analyze its effect on audit fees.  

Other studies construct measures of executives’ own beliefs. For instance, Du et al. (2019) apply 

ML to mutual fund managers’ letters to shareholders to construct a measure of managers’ level 

of confidence in expressing opinions. Their main analysis then studies the effect of confidence on 

future performance. 

Recent advances in ML also enable studies that construct measures of executives’ emotions. 

Akansu et al. (2017) apply ML-based face-reading software to videos of CEOs during press inter-

views to extract facial emotions and quantify CEO mood. They measure emotions such as anger, 

disgust, fear, happiness, sadness, or surprise and study their effect on firm performance. Hu and 

Ma (2021) use ML to construct measures of startup founders’ emotions during investor pitch 

videos. More specifically, they measure three dimensions of emotions: facial emotions, verbal emo-

tions, and vocal emotions. Finally, they analyze the effect of the three dimensions on the proba-

bility of obtaining a venture capital investment. Breaban and Noussair (2018) use ML-based face-

reading software to extract the emotional state of traders in an experimental setting. 

Another stream of the literature addresses executives’ actions and working patterns. Barth, 

Mansouri, and Woebbeking (2020) propose an ML-based measure of the degree to which execu-

tives obstruct the flow of information during earnings conference calls by giving so-called non-

answers to investors’ and analysts’ questions. Bandiera et al. (2020) apply ML to CEO survey 

data to construct a measure of CEO working style. More specifically, their measure captures 

whether a given CEO performs more low-level or more high-level activities. Then, this novel 
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measure enables the authors to study firm-CEO assignment frictions. Choudhury et al. (2019) 

construct a measure of executives’ communication style by applying ML to transcripts and videos 

from interviews of emerging market CEOs. Dávila and Guasch (2022) construct a measure of 

entrepreneurs’ non-verbal communication style during pitch presentations with ML-based com-

puter vision software and analyze its relation to firm valuations and funding success rates. 

The study by Erel et al. (2021) uses ML to measure director quality. They predict the (excess) 

level of directors’ shareholder support over the first three years of tenure using various ML meth-

ods. By interpreting these predictions as a measure of director quality, the authors study firms’ 

decision-making process in the selection of corporate directors. 

Finally, the large amount of image data freely available on the internet allows many studies to 

systematically exploit the information that the looks of corporate executives – in particular, their 

facial traits – may contain. Hsieh et al. (2020) extract a measure of trustworthiness from execu-

tives’ business headshot images. More specifically, they detect and use certain facial features (such 

as eyebrow angle or face roundness) to predict perceived trustworthiness. Their main analysis 

studies the effect of executives’ trustworthiness on audit fees. Peng et al. (2022) leverage the social 

network LinkedIn and apply ML to profile photos of sell-side analysts to construct measures of 

trustworthiness, dominance, attractiveness, etc. Kamiya, Kim, and Park (2019) use ML to first 

measure the width-to-height ratio of CEOs’ faces from portrait photos and then infer a measure 

of facial masculinity to study its effect on firms’ riskiness. 

3.1.3 Measures of Firm Characteristics  

Studies in the third category construct measures of firm characteristics with ML methods. The 

first subcategory consists of measures of firms’ financial characteristics and risk exposures. Bueh-

lmaier and Whited (2018) apply ML to annual reports to construct a measure of financial con-

straints. Their ML-based measure achieves superior performance compared to the existing 

measures. Hanley and Hoberg (2019) construct a measure of aggregate risk exposure in the finan-

cial sector from individual banks’ annual reports by using a commercial ML-based service. They 

use their measure to study the effect of financial sector risk on banks’ stock returns and volatility 

as well as bank failure. Li et al. (2021a) apply ML-based textual analysis methods to construct 

measures of firms’ exposure and response to COVID-19 based on the information from earnings 

calls. Alan, Karagozoglu, and Zhou (2021) measure firm-level cybersecurity risk with ML-based 
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methods from computational linguistics. More generally, Lima and Keegan (2020) provide an 

overview on how ML-based textual analysis can be applied to social media to assess cybersecurity 

risk. 

ML can also help to study corporate culture. Li et al. (2021b) extract aspects of corporate culture 

from conference call transcripts with ML and build measures of five different corporate culture 

values. Using these measures allows them to analyze the effect of corporate culture on firm policies 

such as executive compensation and risk-taking. Furthermore, they study the effect on firm per-

formance metrics such as operational efficiency and firm value. Adams, Akyol, and Grosjean 

(2021) apply ML to firms’ reports to a gender-equality agency to construct multiple measures of 

corporate gender culture. Their novel measures allow them to systematically study how firms 

treat female employees. Adams, Ragunathan, and Tumarkin (2021) apply ML-based textual anal-

ysis to extract boards’ and board committees’ responsibilities and meeting frequencies. 

Finally, the capabilities of ML enable the construction of novel measures of firms’ connectedness. 

Mazrekaj, Titl, and Schiltz (2021) apply ML to construct a measure of firms’ political connections, 

which helps identify potential conflicts of interest. Bubna, Das, and Prabhala (2020) study venture 

capital syndications and create a measure of venture capital relatedness. More specifically, they 

cluster venture capital firms using ML to identify syndication groups and study their effect on 

startup maturation and innovation. Bubb and Catan (2021) apply clustering methods from un-

supervised learning to mutual funds’ proxy votes to determine to which voting parties they belong. 

3.2 Reduction of Prediction Error in Economic Prediction Problems 

Studies of the second archetype of ML applications in finance apply ML to reduce prediction error 

in economic prediction problems. While many problems in economics require the identification of 

causal relationships between economic variables, some problems directly require prediction. ML 

can reduce the prediction error in such problems, that is, generate more accurate predictions than 

simpler approaches such as fitted values from linear regression with OLS. 

Predictions can be generated from numerical data as well as unconventional data such as text, 

images, or videos. Since the purpose of ML in this category is to minimize prediction error in 

economic prediction problems, by definition, only supervised ML is directly applicable here. Given 

the large number of available ML methods, most studies use a multitude of different methods to 
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assess which method works best on the given data. Applying supervised ML methods finally 

results in predictions of an economic variable, which directly helps in solving an economic predic-

tion problem.12 

Table 3 gives an overview of the relevant studies that use ML in economic prediction problems to 

reduce prediction error. In the following, we present these studies in the three categories of (1) 

prediction of asset prices and trading mechanisms, (2) prediction of credit risk, and (3) prediction 

of firm outcomes and financial policy. 

3.2.1 Prediction of Asset Prices and Trading Mechanisms 

The prediction of asset prices and trading mechanisms is of central importance in studying capital 

markets. ML can reduce the prediction error in various types of prediction problems. We distin-

guish among predictions in the following seven different subcategories: equities, bonds, foreign 

exchange, derivatives, general market prices, investors, and market microstructure. 

The most common ML-based prediction in the subcategory of equities is the prediction of future 

stock returns, which is closely related to the field of cross-sectional asset pricing. Rasekhschaffe 

and Jones (2019) provide an overview of the use of ML for predicting the cross-section of stock 

returns and the selection of individual stocks. Martin and Nagel (2022) emphasize the challenges 

of cross-sectional asset pricing with high-dimensional data. Gu, Kelly, and Xiu (2020) directly 

predict future stock returns based on firm characteristics, historical returns, and macroeconomic 

indicators. They use ML methods with varying complexity ranging from regularized linear models 

to neural networks. Furthermore, they analyze which predictor variables are the most informative 

in predicting the cross-section of stock returns. Rossi (2018) predicts future stock returns and 

future stock volatility based on established predictor variables from Welch and Goyal (2008). The 

studies by Moritz and Zimmermann (2016), Kelly, Pruitt, and Su (2019), Gu, Kelly, and Xiu 

(2021), and Freyberger, Neuhierl, and Weber (2020) all predict future stock returns based on firm 

characteristics and historical returns. However, they differ with respect to the specific ML methods 

                                         

12 Most studies only focus on the predictions themselves. However, there are also some studies that try to analyze how 
the predictor variables affect the predictions. While most ML models do not allow for direct observation of how the 
algorithm generates its predictions, methods from the field of interpretable ML try to “open the black box” (see, e.g., 
Murdoch et al., 2019). 
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applied. Grammig et al. (2020) construct a hybrid approach that combines traditional methods 

based on financial theory with ML to predict future excess stock returns. Chinco, Clark‐Joseph, 

and Ye (2019) apply LASSO to predict ultra-short-term future stock returns based on the cross-

section of ultrashort-term historical returns. Akyildirim et al. (2021) use various ML methods to 

predict intraday excess returns based on high-frequency order and trade information. Amel-Zadeh 

et al. (2020) predict abnormal stock returns around earnings announcements based on financial 

statement variables. They use LASSO, random forests, and neural networks and analyze which 

financial statement variables are the most informative. Chinco, Neuhierl, and Weber (2021) use 

ridge regression to determine the probability of encountering stock return anomalies. Feng, Giglio, 

and Xiu (2020) propose an ML-based method to evaluate the contribution of the plethora of 

potential risk factors in explaining stock returns. Two studies focus on financial market volatility: 

Kogan et al. (2009) predict future stock volatility based on annual reports; Osterrieder et al. 

(2020) predict the intraday volatility index VIX from option prices. Rossi and Timmermann 

(2015) use ML to study how stock returns and economic activity are related. They apply boosted 

regression trees to predict covariances between stock returns and a daily economic activity index. 

In addition to predictions of individual stock returns, ML can reduce the prediction error in 

predicting aggregate stock market behavior, particularly the equity risk premium. Jacobsen, 

Jiang, and Zhang (2019) predict the equity risk premium based on established stock market 

predictor variables from Welch and Goyal (2008) with an ensemble of multiple ML models. 

Routledge (2019) predicts the equity risk premium from macroeconomic indicators and FOMC 

texts. Adämmer and Schüssler (2020) extract topics discussed in general news articles with ML 

to predict the equity risk premium. 

Some studies predict certain aspects of bonds. For instance, Bianchi, Büchner, and Tamoni (2021) 

apply various ML methods to predict future excess returns of US treasury bonds from general 

yield data and macroeconomic indicators. 

In the subcategory of foreign exchange, the study by Colombo, Forte, and Rossignoli (2019) ap-

plies SVM to predict the direction of changes in exchange rates based on indicators of market 

uncertainty. 

Other studies use ML to price derivatives, which is also an early application of ML in finance. 

Hutchinson, Lo, and Poggio (1994) price options on the S&P 500 future based on the Black-
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Scholes variables with an early variant of neural networks. Similarly, Yao, Li, and Tan (2000) 

price options on the Nikkei 225 future. In more recent work, Spiegeleer et al. (2018) find that ML 

methods can price derivatives much faster than advanced mathematical models while achieving 

only slightly worse accuracy. 

Instead of focusing on certain asset classes, there are also studies concerning general financial 

claims. Two studies directly predict the stochastic discount factor. Chen, Pelger, and Zhu (2019) 

use generative adversarial networks based on deep neural networks with different predictors, such 

as firm characteristics, historical returns, and macroeconomic indicators. Kozak, Nagel, and San-

tosh (2020) develop a custom ML method based on Bayesian priors to predict the stochastic 

discount factor from firm characteristics and historical returns. The study by Oh, Kim, and Kim 

(2006) applies ML to detect and predict financial crises from financial market volatility. Similarly, 

Coffinet and Kien (2019) develop an ML toolkit to detect banking crises. 

In addition to asset prices and returns, prediction problems also arise in studies concerning retail 

and professional investors’ trading decisions and performance. Li and Rossi (2020) apply boosted 

regression trees to predict mutual funds’ performance, which then allows for fund selection. Rossi 

and Utkus (2021) study which type of retail investors benefit (the most) from robo-advising. More 

specifically, they apply boosted regression trees to predict changes in investors’ portfolio alloca-

tions and performance. 

Finally, some studies focus on predicting certain aspects of the market microstructure with ML. 

McInish et al. (2019) apply random forests to predict the lifespan of orders based on order char-

acteristics and market data. Easley et al. (2021) predict a variety of variables relevant for market 

participants, such as bid-ask spreads, changes in volatility, and sequential return correlations from 

established microstructure measures with random forests. 

3.2.2 Prediction of Credit Risk 

Credit risk is a typical economic prediction problem: its ultimate goal is to know which prospective 

borrowers will eventually default. As such, ML can lower prediction errors and improve decision 

making, such as in loan origination. We divide the current literature concerning ML-based pre-

dictions of credit risk into the following three subcategories: consumer credit risk, real estate 

credit risk, and corporate credit risk. 
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Studies on consumer credit risk apply ML to make default predictions for any type of consumer 

credit. Albanesi and Vamossy (2019) study general consumer credit default. They use advanced 

ML methods such as boosted regression trees and deep neural networks to derive more accurate 

predictions from credit bureau data compared to standard credit scoring models. Furthermore, 

they analyze which predictors are the most relevant and how the different predictors affect the 

predictions. Similarly, Tantri (2021) predicts consumer credit default with boosted regression trees 

based on borrower and loan characteristics data and finds that using ML-based default predictions 

can improve lending efficiency. Khandani, Kim, and Lo (2010) predict consumer credit card de-

fault based on transaction data and traditional credit bureau data. Similarly, Butaru et al. (2016) 

predict credit card default but consider more general account data and macroeconomic indicators. 

They both use tree-based ML methods that automatically consider nonlinearities and interactions 

between predictor variables. Butaru et al. (2016) also attempts to identify which predictor varia-

bles drive default predictions. Björkegren and Grissen (2018, 2020) focus on bill payment and 

apply random forests to mobile phone metadata to predict the payment of consumer bills in 

developing countries. The ability to make credit risk predictions based on easily obtainable data 

from mobile phones can help unbanked people in developing countries without a credit score 

obtain access to loans. Slightly different from the studies above, Gathergood et al. (2019) use 

credit card transaction data to predict credit card repayment patterns. They predict not whether 

customers pay their credit card bills but how customers split repayment on multiple cards with 

different interest rates. They also apply various ML methods and analyze which predictors are 

most informative. 

Whenever algorithm-based decisions affect people, algorithmic bias is a potential issue. Since ML-

based predictions of consumer credit risk directly affect credit approval decisions, it is necessary 

that the algorithm does not discriminate against people based on attributes such as gender or 

race. The literature does not paint a uniform picture of whether ML reduces or increases bias in 

consumer credit decisions. Rambachan et al. (2020a, 2020b) argue that discrimination by algo-

rithms crucially depends on the given data. Since algorithms base their decisions on the data on 

which they have been trained, they might propagate biases present in the data. Fuster et al. 

(2022) apply ML to a concrete dataset to create an ML model for credit decisions. They find that 

ML increases the disparity between and within different groups relative to simpler methods. In 
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particular, it disadvantages Hispanic and Black borrowers compared to traditional approaches. 

Hence, awareness of the potential discrimination by ML-based algorithms is required if their pre-

dictions influence decisions that directly affect people, such as lending. 

On the other hand, there are also studies showing that ML use can decrease bias in consumer 

credit decisions. Based on a theoretical model, Philippon (2019) shows how algorithms can reduce 

discrimination in credit markets. Dobbie et al. (2021) train an ML model to maximize expected 

profit from credit applications and find that the resulting lending decisions eliminate bias. Klein-

berg et al. (2018) show that including problematic variables, such as gender and race, in ML 

models can actually reduce discrimination. To conclude the discussion concerning algorithmic bias 

in consumer credit risk, to date, there is no uniform picture in the literature. Some studies find 

that using ML to determine consumer credit risk increases bias, while other studies find that it 

decreases bias. 

The second subcategory of ML-based credit risk predictions, real estate credit risk, involves the 

risk of mortgages and commercial real estate loans. Sadhwani, Giesecke, and Sirignano (2021) use 

deep neural networks to predict mortgage loan risk from mortgage origination and performance 

data and macroeconomic indicators. They also analyze which predictor variables are the most 

important and how they affect the predictions. Cowden, Fabozzi, and Nazemi (2019) use various 

ML methods to predict commercial real estate default based on property characteristics. 

Corporate credit risk is another area in which ML can provide superior credit risk predictions. 

Jones, Johnstone, and Wilson (2015) predict firms’ credit rating changes based on firm funda-

mentals, analyst forecasts, and macroeconomic indicators. Tian, Yu, and Guo (2015) and Serm-

pinis, Tsoukas, and Zhang (2022) directly predict corporate bankruptcy from firms’ financial 

statements and market data. Lahmiri and Bekiros (2019) similarly predict bankruptcy from firm 

fundamentals but additionally include general risk indicators. They use more sophisticated neural 

networks. Croux et al. (2020) apply LASSO to predict fintech loan default from loan and borrower 

characteristics as well as macroeconomic indicators. In contrast to the above studies, Nazemi and 

Fabozzi (2018) focus on the time after credit default and predict the recovery rates of corporate 

bonds based on bond and industry characteristics and macroeconomic indicators with various ML 

methods. 
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3.2.3 Prediction of Firm Outcomes and Financial Policy 

The analysis of the determinants of specific firm outcomes (e.g., capital structure), as an im-

portant subject of study in the field of corporate finance, can also be the target of ML-based 

predictions. We divide the current literature in this category into the following three subcategories 

based on the specific target of the prediction: financial outcomes, corporate misconduct, and 

startups’ success. 

Two studies use ML to predict different financial outcomes. Amini, Elmore, and Strauss (2021) 

study firms’ capital structure as a typical problem in corporate finance. They predict corporate 

leverage based on the standard capital structure determinants in the literature (Frank and Goyal, 

2009) with various ML methods. Furthermore, they analyze which determinants are actually in-

formative for capital structure and how they influence the predictions in detail. The study by van 

Binsbergen, Han, and Lopez-Lira (2020) applies random forests to predict firms’ future earnings 

based on their accounting data, macroeconomic data, and analyst forecasts. 

Corporate misconduct represents another typical prediction problem in the category of firm out-

comes and financial policy. The most common type of corporate misconduct studied in the liter-

ature is accounting fraud. While traditional approaches can be used to predict accounting fraud 

(such as the Beneish, 1999, model of earnings manipulation), some studies argue that ML can 

provide superior prediction accuracy. Bao et al. (2020) apply boosted regression trees to raw 

financial statement variables to predict accounting fraud. They find that ML-based predictions 

outperform simpler existing fraud models. Brown, Crowley, and Elliott (2020) also predict ac-

counting fraud by applying ML-based textual analysis to firms’ annual reports. They further 

analyze which topics are the most informative and how they affect fraud predictions. Bertomeu 

et al. (2021) use boosted regression trees to predict material misstatements based on a large set 

of potential predictor variables. In addition to accounting fraud, Campbell and Shang (2021) 

apply textual analysis and ML to predict general violations of regulatory rules from firms’ em-

ployee reviews on websites such as Glassdoor.  

Finally, studies in the field of entrepreneurial finance use ML to predict startups’ success. Xiang 

et al. (2012) apply ML-based textual analysis to predict startup acquisitions based on firms’ 

fundamental data and firm-specific news. Similarly, Ang, Chia, and Saghafian (2022) predict 
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startups’ valuations and their probabilities of success with ML-based textual analysis and boosted 

regression trees. 

3.3 Extension of the Existing Econometric Toolset 

Studies of the third archetype of ML applications extend the existing econometric toolset. Many 

commonly used econometric methods contain a prediction component. For instance, the first stage 

of instrumental variable regression with 2SLS is effectively a prediction problem, as only the fitted 

(predicted) value of the instrumented variable enters the second stage. ML methods can provide 

superior predictions and hence improve the capabilities of such econometric methods. On the 

other hand, some ML methods already serve similar purposes as existing econometric methods. 

For instance, clustering is a known problem in econometrics and in ML. ML-based methods often 

provide superior performance, so they can directly extend the econometric toolset. Table 4 gives 

an overview of the literature on ML-based econometric methods. We distinguish between causal 

ML that uses ML for the estimation of treatment effects and other isolated applications of ML in 

econometrics. Within the category of causal ML, we further divide the literature into ML-en-

hanced methods for instrumental variable regression, novel methods of causal trees and causal 

forests, and other approaches related to causal ML. In the following, we briefly review the corre-

sponding literature. 

3.3.1 Causal ML 

While traditional econometric methods aim for causality, ML methods are designed for prediction 

or for data structure inference. The field of causal ML tries to combine the advantages of both to 

create superior econometric methods suitable for causality and especially for the estimation of 

treatment effects. The most developed methods within causal ML are ML-enhanced instrumental 

variable regression and the novel methods of causal trees and forests. 

As noted before, ML can directly improve the first stage of instrumental variable regression. By 

providing better predictions for the instrumented variable, the coefficient of determination R² of 

the first stage improves, resulting in more precise estimates in the second stage. Concrete imple-

mentations of this idea already exist for different ML methods, including LASSO (Belloni et al., 

2012), ridge regression (Carrasco, 2012; Hansen and Kozbur, 2014), and neural networks (Hartford 
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et al., 2017). However, Angrist and Frandsen (2022) argue that ML-enhanced instrumental vari-

able methods might not be superior to existing specialized approaches in selecting instrumental 

variables. 

For the estimation of treatment effects with ML, causal trees and causal forests are other well-

developed methods. The seminal work by Athey and Imbens (2016) introduced the causal tree 

approach, which uses tree-based ML methods to partition data into subpopulations with different 

magnitudes of treatment effects. Causal forests proposed by Athey and Wager (2019) extend this 

concept by using an entire ensemble of causal trees. Some studies apply causal forests to concrete 

problems in finance. Gulen, Jens, and Page (2020) apply causal forests to estimate heterogeneous 

treatment effects of debt covenant violations on firms’ investment levels. O’Malley (2021) esti-

mates the treatment heterogeneity of a legislative change in home repossession risk on mortgage 

default with causal forests. 

In addition to causal trees and causal forests, other approaches use ML to improve the estimation 

of treatment effects. Lee, Lessler, and Stuart (2010) estimate the propensity score with ML. Mul-

lainathan and Spiess (2017) suggest the use of ML to verify the balance between treatment and 

control groups. They argue that if it is possible to predict the treatment assignment with ML, 

then the split into treatment and control groups cannot be balanced. However, this idea works in 

only one direction: it is possible to infer imbalance but not balance by applying ML to predict 

the treatment assignment (since the chosen ML methods may not be powerful enough to predict 

the treatment assignment of imbalanced data). Chernozhukov et al. (2017, 2018) directly calculate 

treatment effects from ML-based predictions of treatment assignment and outcome. Finally, Athey 

et al. (2019) predict the counterfactual with ensemble methods to estimate treatment effects from 

panel data. 

3.3.2 Special Applications of ML in Econometrics 

While causal ML for the estimation of treatment effects is currently the most developed applica-

tion of ML in econometrics, there are various special applications of ML in econometrics that also 

extend the existing econometric toolset. 

Above, we presented how ML can create measures of economic variables. By generalizing this 

concept, ML can also construct a predictability measure of entire economic theories. Peysakhovich 
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and Naecker (2017) introduce the notion that ML can be used to derive an upper bound of the 

predictive power of theories: the explainable variation in the dependent variable in a given dataset 

with ML methods. Fudenberg et al. (2019) extend this idea to construct a completeness measure 

for economic theories. They calculate completeness by comparing two prediction errors: the error 

achieved from using the model and variables hypothesized by economic theory and the error 

achievable with ML. In general, different datasets contain different levels of information, so they 

allow different levels of predictability. By comparing prediction errors to those achievable with 

ML methods, it is possible to create a fairer and more informative measure for a comparison of 

different economic theories. 

A different problem relevant in econometrics as well as in ML is imbalanced data. For instance, 

in loan performance data, actual defaults are much rarer than uneventful repayments. Sigrist and 

Hirnschall (2019) combine ML with traditional econometric methods to address such problem 

types. More specifically, they use boosted regression trees to enhance the traditional Tobit model. 

They also illustrate the advantages of their method in a concrete problem by applying it to loan 

defaults in Switzerland. 

In the field of simulation, Athey et al. (2021) use generative adversarial networks instead of tra-

ditional Monte Carlo methods to simulate data that more closely mimic real data. They illustrate 

their method by using simulated data for performance comparisons across different econometric 

estimators. Adams et al. (2021) use deep neural networks to generate artificial paintings to study 

gender discrimination in art prices. 

Finally, Ludwig, Mullainathan, and Spiess (2019) introduce ML-augmented pre-analysis plans to 

avoid p-hacking. They augment standard linear regression with new regressors from ML. The new 

regressors aggregate many potentially relevant variables into a single index. Hence, their method 

avoids the otherwise necessary pre-specification of concrete analysis choices in standard pre-anal-

ysis plans. 

4. Future Prospects of ML in Finance 

The benefits of ML over traditional methods as illustrated above together with the existing but 

still limited number of ML applications in finance suggest a still mostly untapped potential for 

future research. However, it is unclear whether the usage of ML methods will actually gain broad 
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popularity in the finance community. Furthermore, prospective users of ML need to know whether 

ML applications can also reach the most prestigious journals of the profession or if they tend to 

be published only in specialty journals. Finally, the different application categories of ML de-

scribed by our taxonomy and the wide variety of research fields in finance make it difficult to 

pinpoint exactly where the most promising applications of ML in finance research lie. In this 

section, we give indicative answers to these questions by systematically analyzing the existing 

finance literature that already uses ML methods. In particular, we investigate the publication 

success of such papers and how it differs by research field and application type. Our results may 

not only indicate the future prospects of ML in finance but also show where and how researchers 

can apply ML to maximize its future potential. 

4.1 Sample of Finance Research Papers that Apply ML 

For a systematic analysis of the existing finance research that applies ML, we begin by construct-

ing a sample of relevant publications. We build our sample by focusing on research papers that 

have been published in major finance journals. As our starting point, we choose the 45 most highly 

ranked finance journals (categories A+, A, and B) of the journal ranking of the German Academic 

Association of Business Research (VHB-JOURQUAL3).13 Then, we visit each journal website and 

download all papers that have been published in the years 2010 to 2021 and that contain any of 

the following keywords either in the title, abstract, or full text: 

- General ML-related terms: “machine learning”, “big data”, “artificial intelligence” 

- ML method categories: “supervised learning”, “unsupervised learning”, “reinforcement 

learning”, “semi-supervised learning” 

- Specific ML methods: “lasso”, “ridge”, “elastic net”, “decision tree”, “random forest”, 

“boosted regression trees”, “gradient boosting”, “support vector machine”, “support vec-

tor classification”, “support vector regression”, “neural network”, “naïve bayes” 

                                         

13 In an alternative approach, we choose the 37 journals that are ranked as 4*, 4, or 3 within the finance category of 
the AJG 2018 ranking of the Chartered Association of Business Schools. Those ranks are largely comparable to the 
A+, A, and B ranks of the VHB-JOURQUAL3 ranking. Our results remain qualitatively unchanged when using this 
alternative set of journals. 
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We read each paper in this initial sample and manually exclude papers that do not use machine 

learning in any part of their analysis (for instance, if they mention the keyword(s) above only 

while describing the work of others). Finally, we arrive at a sample that consists of 346 papers.  

To investigate possible differences in publication success by research field and application type, 

we classify each paper in both dimensions. For the classification by research field, we make use of 

JEL codes.14 In the few cases where EconLit provides no JEL codes or if none of the provided 

codes fall into the financial economics code range (G), we instead use author-provided JEL codes 

obtained directly from the papers. We then classify each paper in our sample into exactly one of 

the five JEL subfields within financial economics (G1–G5 code range).15 Since some papers carry 

multiple JEL codes, we manually classify 68 papers in our sample for which the subfield assign-

ment is ambiguous. In 29 cases, we can resolve the ambiguity by choosing the subfield according 

to the majority of a paper’s JEL codes. In the remaining 39 cases, we manually assign the most 

appropriate subfield. 

Regarding the classification by application type, we inspect each paper’s methodology in detail 

and then classify it into one of the three archetypes of our taxonomy described in Section 3: (i) 

superior and novel measures, (ii) economic prediction problems, and (iii) new econometric tools.  

4.2 How Promising are ML Applications in Finance? 

To provide indications of the future prospects of ML applications in finance, we first analyze the 

journals in which the existing ML applications have been published. Figure 5 illustrates the large 

growth in the usage of ML. In 2018, the number of publications that used ML more than tripled 

compared to the previous years’ average. In 2019, the increase was more than fivefold. In 2020, 

there were almost seven times as many publications using ML than before, and in 2021 we found 

an almost elevenfold increase in the number of published ML papers.  

                                         

14 To obtain the JEL codes of the papers in our sample, we use the EconLit database from the AEA. The JEL codes 
from EconLit are assigned by professional staff, ensuring systematic classification criteria and maximal coverage (Falk 
and Andre, 2021). 

15 JEL codes are structured hierarchically and consist of one letter and two digits (e.g., G35), where the letter refers to 
the general field in economics (e.g., G for financial economics), the first digit describes the subfield (e.g., G3 for corporate 
finance), and the second digit determines the specific area within a subfield (e.g., G35 for payout policy). 
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While the strong growth in the number of finance publications that apply ML over the last few 

years shows a clear trend toward an increasing usage of ML, the question of whether ML appli-

cations have the potential to be published in the most prestigious journals of the profession re-

mains unanswered. Panel A in Table 5 shows how the number of ML publications has evolved 

over time by journal rank. In the years until 2017, the few early ML applications were published 

mostly in journals ranked as B. Since 2018, however, a significant portion of the ML publications 

appeared in the highest-ranked journals. To control for the fact that there exist many more lower-

ranked than higher-ranked journals (and thus publications in the respective journals), Panel B 

reports the share of ML publications relative to the total number of publications that major 

finance journals of different ranks published each year. The results show that the strong increase 

in the number of ML publications was not driven by a general increase in the number of papers 

that journals of any rank have published; similar to the absolute numbers, the relative share of 

publications that use ML has increased similarly in total and for each journal rank.16 In 2021, 

there are no meaningful differences in the relative share of ML publications across journal ranks: 

approximately 3%–4% of the publications used ML in 2021 independent of the journal rank.17  

Our results in this section give two main indications of the future prospects of ML in finance. 

First, there is steady and robust growth in the number of finance publications that apply ML. It 

is likely that this trend will continue with even more ML applications in the years ahead. The 

benefits of ML illustrated above and the continuing increase in relevance of ML outside of aca-

demia also leave little reason to expect otherwise. Second, researchers who apply ML in finance 

can reasonably expect their papers to have the potential to reach the highest-ranking journals of 

the profession. Not only are there currently numerous examples of ML applications in such jour-

nals, but their relative share has now reached a level that is comparable to lower-ranked journals. 

Hence, these results may suggest a bright and promising future for ML applications in finance. 

                                         

16 We conduct two-sample t-tests for the differences between the 2010–2017 share of ML papers across journals of the 
three different journal categories (A+, A, and B). In the 2010–2017 period,  we detect a statistically significant difference 
between the share of ML papers in B ranked journals (0.5%) and that in A+ and A ranked journals (0.2%/0.3%) at 
the 5% level. In the 2018-2021 period, this statistically significant difference disappears.   

17 Notably, the total number of publications also includes theory papers and other methodologies. The share of ML 
papers among empirical studies would be even higher. 
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4.3 Which Kinds of ML Applications in Finance are Most Promising? 

In the previous section, we showed that ML applications have seen strong time-series growth in 

the most prestigious finance journals over the last several years. We now move on to the question 

of what makes certain applications more promising than others with regard to publication success. 

To answer this question, we first investigate differences in the distribution of ML publications by 

research field and across journal ranks; and then, subsequently apply the classification from our 

taxonomy (see Section 3) as a third dimension (methodological purpose) to the analysis. 

In Table 6, we begin with examining the distribution of ML publications by research field. Column 

1 shows that most ML publications (to date) belong to the general financial markets (G1) category 

(71.1%), which consists of asset pricing and related areas. Considerably fewer ML publications 

have been published in the fields of financial institutions and services (G2, 13.6%) and corporate 

finance and governance (G3, 14.2%). There is a very small share of ML publications in behavioral 

finance (G4, 0.9%) and household finance (G5, 0.3%). 

To account for heterogeneity in the distribution of all published finance papers by research field, 

we compare the distribution of ML publications to that of all publications in major finance jour-

nals. This comparison is crucial if the general financial markets (G1) category also represents the 

largest field in major finance journals. If so, the previous result could be simply driven by a large 

number of publications that belong to the general financial markets category (G1). Therefore, 

Column 5 shows the distribution of all (2010–2021) publications across fields18, which we then 

compare with the distribution of ML publications across fields. Visual inspection of Columns 1 

and 5 already suggests that even after accounting for research field effects, ML papers are signif-

icantly more likely in the general financial markets category compared to other fields. A Pearson 

𝜒ଶ-test, which tests for systematic differences of two distributions with categorical variables, con-

firms this observation at every plausible level of significance (see last row of Table 6). In additional 

analyses using z-tests for differences in proportions, Column 9 shows that the distribution of ML 

publications is much more concentrated with a substantially higher share of ML (relative to all) 

                                         

18 We obtain data for all finance publications in the 45 major finance journals (ranked as A+, A, or B according to the 
VHB-JOURQUAL3 rating) for the years 2010 to 2021 from EconLit. We classify each paper into one of the five JEL 
subfields within financial economics (G1-G5 code range) with the procedure described in Section 4.1. 
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papers in the field of general financial markets (G1: 71.1% vs. 47.1%, z-stat: 8.84) and a lower 

share of papers in the fields of financial institutions and services (G2: 13.6% vs. 25.4%, z-stat:  

-5.03) and corporate finance and governance (G3: 14.2% vs. 27.3%, z-stat: -5.44). In the fields of 

behavioral finance (G4) and household finance (G5), the sample sizes are too small to draw any 

economically meaningful conclusions. We repeat our analysis for each of the three journal ranking 

categories (A+, A, and B) in Columns 10-12 and find qualitatively similar results.  

Second, we examine the distribution of ML publications by the methodological purpose (see our 

taxonomy, Section 3). Table 7 (Panel A, Column 1) shows the distribution for the full sample of 

ML publications across all fields. A large majority of publications (69.1%) apply ML to reduce 

the prediction error in economic prediction problems. Using ML to construct superior and novel 

measures is much less widespread on average (25.1%). Very few finance publications (5.8%) use 

ML to extend the econometric toolset.19 Columns 2-4 reveal that there is strong heterogeneity by 

journal rank. Specifically, publications in the highest-ranked journals (A+) use ML disproportion-

ally more often to construct superior and novel measures compared to publications in lower-

ranked journals (56.4% vs. 32.3% and 18.4%). These differences are statistically significant at the 

5% level using z-tests for differences in proportions between journal rank categories. On the other 

hand, economic prediction problems are less prevalent in the highest-ranked journals (38.5% vs. 

62.9% and 75.5%), which is again statistically significant. 

To detect differences in the publication success of application types across research fields, we 

repeat the previous analysis for each research field separately in Panel B of Table 7. Specifically, 

we are interested in identifying systematic patterns across research fields, e.g., if superior and 

novel measures are more likely to be successful in specific fields of finance. As Panel B, Column 1 

shows, superior and novel measures are disproportionally more often used in the financial insti-

tutions (G2) and corporate finance (G3) literatures (29.8% and 32.7% vs. 25.1%). Interestingly, 

within these two fields, publications in journals ranked as A+ (Column 2) almost exclusively use 

ML to construct superior and novel measures (80.0% and 100.0%). 

                                         

19 Note that the number of papers in our sample that apply ML to extend the econometric toolset is low mainly because 
we only consider papers from finance journals and therefore ignore contributions from the econometrics literature. 
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Analysis by Citations. To further corroborate our findings, we analyze citations as an alterna-

tive measure of publication success20. We obtain the number of citations from Web of Science (as 

of Sep 19, 2022) for each ML publication in our sample and compare it to the average number of 

citations for all papers published in major finance journals. Given that a paper’s number of cita-

tions (as of Sep 19, 2022) naturally depends on the time since publication, we demean the number 

of citations in the following way: for each ML publication in our sample, we calculate excess 

citations, which is the difference between a paper’s actual number of citations and the average 

number of citations of all publications in major finance journals from the same year.21 We then 

study differences in excess citations by research field and application type and conduct t-tests 

against the null hypothesis that excess citations are statistically indistinguishable from zero (i.e., 

there are no differences in citation counts between ML publications and all publications from a 

given year). Table 8 shows our results. Overall, ML publications receive 3.0 more citations than 

the average publication in major finance journals from the same year, which is statistically signif-

icant at the 10% level. Across application types, publications that use ML to construct superior 

and novel measures receive 10.2 more citations than general publications in major finance journals, 

which is highly significant at the 1% level. Across fields, ML publications in corporate finance/gov-

ernance receive 7.6 more citations than general publications in major finance journals, which is 

significant at the 5% level. Finally, publications that apply ML to construct superior and novel 

measures related to corporate finance/governance show the highest potential with regard to cita-

tion count as they receive 24.2 more citations, which is also highly significant at the 1% level. 

Given that the average ML publication in our sample has been cited 16.2 times, these effects are 

not only statistically significant but also economically large.22 23 In sum, the results from the 

                                         

20 We thank an anonymous referee for encouraging this analysis.  

21 We obtain citation data to calculate average citation counts per year from Web of Science. 

22 In untabulated analyses, we account for possible unobserved year-level heterogeneity in citation growth across fields 
(for instance, if citations after publication grow stronger in certain fields) by demeaning citation counts by year-and-
field averages. Our results are qualitatively and statistically similar when conducting this alternative analysis.  

23 A second possible alternative to analyzing total citation counts is to analyze the ranking of journals that cite ML 
publications. In untabulated analyses, we show that publications that use ML to construct superior and novel measures 
tend to be cited from higher-ranked journals. Again, this effect is especially pronounced in the field of corporate finance 
and governance. These additional analyses of citations thus support our main findings. The detailed results are available 
from the authors upon request. We thank an anonymous referee for suggesting this analysis. 
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citation analysis are consistent with the results from the previous analysis using journal ranks 

and thus provide corroborating evidence. 

Our findings in this section yield three important conclusions. First, the usage of ML to construct 

superior and novel measures seems to be one application type with strong future potential. While 

most publications to date apply ML to economic prediction problems, papers that use ML for 

superior and novel measures have appeared in higher-ranked journals and receive more citations. 

Second, papers that apply ML in the field of corporate finance and governance seem to benefit 

from ML’s ability to produce superior and new measures. Finally, the scarcity of existing research 

in the fields of behavioral finance and household finance indicates another attractive avenue for 

future ML applications.  

5. Conclusion 

In this paper, we studied the question of how researchers can leverage ML technology in finance. 

First, we established that different types of ML solve different problems than traditional linear 

regression with OLS. While the properties of OLS are beneficial for explanation problems, super-

vised ML is the superior method for prediction problems. As we illustrated with a real estate 

asset pricing prediction problem, ML-based price predictions can achieve substantially lower pric-

ing errors than OLS. 

In the second part of this paper, we developed the following taxonomy of ML applications in 

finance: 1) construction of superior and novel measures, 2) reduction of prediction error in eco-

nomic prediction problems, and 3) extension of the existing econometric toolset. This taxonomy 

serves multiple purposes. First, it enables a systematic review of the existing ML literature in 

finance. Second, it enables a better understanding of new contributions and how they relate to 

the existing literature. Finally, it may guide researchers in discovering possible applications and 

thus may facilitate new ML studies in finance. 

In the final part, we provided indications of the future prospects of ML applications in finance by 

analyzing the ML papers published in major finance journals. Over the last few years, there has 

been a strong growth in the number of ML applications in finance, and many of these applications 

reached the highest-ranked journals of the profession. Our results suggest that ML may become 

even more widespread in finance research in the coming years. They also indicate a particularly 
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large potential of applying ML to unconventional data to construct superior and novel measures 

of topics related to the field of corporate finance and governance. The fields of behavioral and 

household finance may also offer a mostly untapped potential for ML in future research. 
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Figures and Tables 

Table 1. Differences between traditional econometrics and the two major types of ML: 
supervised and unsupervised learning  
This table gives an overview of how traditional econometrics and the two major types of ML, supervised 
and unsupervised learning, differ with regard to the used data, method, results, usage, and purpose. 
Traditional econometrics enables explanations of economic phenomena, while supervised learning pro-
vides predictions and unsupervised learning infers data structure. 

Approach Data Method Results Usage Purpose 

Traditional 
Econometrics 

Labeled Data 
(𝑋௜ , 𝑌௜)௜ 

Linear Regression 
(OLS) 

Explanatory Model &  
Statistical Significance 

(Causal)  
Relationship 

Explanation 
“𝛽መ” 

Supervised 
Learning 

Labeled Data 
(𝑋௜ , 𝑌௜)௜ 

Supervised ML 
Method 

Prediction Model &  
Prediction Performance 

Out-of-Sample 
Predictions 

Prediction 
“𝑦ො” 

Unsupervised 
Learning 

Unlabeled Data 
(𝑋௜)௜ 

Unsupervised ML 
Method 

Data Structure Model & 
Data Structure Character-
istics 

Structural Infor-
mation from Data 

Data Struc-
ture Inference 
“𝑋” 
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Table 2. Overview of studies that use ML to construct superior and novel measures  
This table presents an overview of the relevant studies in finance that apply ML to construct superior 
and novel measures. There are three main categories: measures of sentiment, measures of corporate ex-
ecutives’ characteristics, and measures of firm characteristics. 

Category Subcategory Measures 

Measures of  
Sentiment 

Stocks  

- Investor sentiment in social media 
- Sentiment in news 
- Sentiment in analyst reports 
- Sentiment in annual reports 

Sovereign Debt - Sentiment in news 

Products 
- Consumer sentiment in social media 
- Expert sentiment in product-technology articles 

Measures of  
Corporate  
Executives’  
Characteristics 

Personality Traits 
- Big Five scores 
- Risk tolerance 

Beliefs - Confidence in expressing opinions 

Emotions 
- Facial emotions (e.g., happiness, sadness, anger, fear, disgust) 
- Verbal emotions (e.g., positive, negative, warmth, ability) 
- Vocal emotions (e.g., valence, arousal, happiness, sadness) 

Actions and  
Working Patterns 

- Answer avoidance in conference calls 
- Working style (high- vs. low-level activities) 
- Communication style 

Quality - Expected shareholder support 

Looks 

- (Facial) Attractiveness 
- (Facial) Trustworthiness 
- (Facial) Dominance 
- (Facial) Masculinity 

Measures of Firm 
Characteristics  

Financial Characteristics 
and Risk Exposures 

- Financial constraints 
- Risk exposures (e.g., COVID-19, cybersecurity) 

Corporate Culture 
- Cultural values (e.g., innovation, integrity, teamwork) 
- Gender culture 
- Board responsibilities 

Connectedness  
- Political connectedness 
- Venture capital communities 
- Mutual fund voting behavior 
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Table 3. Overview of studies that use ML in economic prediction problems  
This figure presents an overview of relevant studies in finance that apply ML in economic prediction 
problems to reduce prediction error. There are three main categories of economic prediction problems for 
which ML is relevant: prediction of asset prices and trading mechanisms, prediction of credit risk, and 
prediction of firm outcomes and financial policy. 

Category Subcategory Prediction Targets 

Prediction of  
Asset Prices and 
Trading Mecha-
nisms 

Equities 

- Stock returns 
- Stock volatility 
- Stock covariance 
- Equity risk premium 

Bonds - Future excess returns of US treasury bonds 

Foreign Exchange - Direction of changes in exchange rates 

Derivatives  
- Prices of options on index futures 
- Prices of general derivatives  

General Financial Claims 
- Stochastic discount factor 
- Financial crises 

Investors 
- Mutual fund performance 
- Retail investors’ portfolio allocations and performance 

Market Microstructure 
- Lifespan of trading orders 
- General microstructure variables 

Prediction of 
Credit Risk 

Consumer Credit Risk 

- General consumer default 
- Credit card delinquency and default 
- Bill payment in developing countries 
- Credit card repayment patterns 

Real Estate Credit Risk 
- Mortgage loan risk  
- Commercial real estate default 

Corporate Credit Risk 

- Firms’ credit rating changes 
- Corporate bankruptcy 
- Fintech loan default 
- Recovery rates of corporate bonds 

Prediction of Firm 
Outcomes and  
Financial Policy 

Financial Outcomes 
- Capital structure 
- Earnings 

Corporate Misconduct 
- Accounting fraud  
- Regulatory violations 

Startups’ Success 
- Startup acquisitions 
- Startup valuations and success probabilities 
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Table 4. Overview of ML-based methods that extend the existing econometric toolset 
This table presents the different categories of ML-based methods that extend the existing econometric 
toolset. The largest category is causal ML for the estimation of treatment effects. ML enhances existing 
methods, such as instrumental variable regression, or introduces new methods, such as causal trees and 
causal forests. ML also provides other methods relevant for the estimation of treatment effects, such as 
verifying the balance between treatment and control groups. The second category includes special appli-
cations of ML in econometric approaches in addition to treatment effects, such as the generation of 
simulated data. 

Category Subcategory Approaches 

Causal ML 

Instrumental Variable Re-
gression 

- 2SLS first stage with LASSO, ridge regression, or neural 
networks 

Causal-Tree Based Methods 
and Applications 

- Causal trees 
- Causal forests 
- Applications of causal forests 

Other Causal ML 

- Direct prediction of treatment effects 
- ML-based propensity score 
- Balance verification between treatment and control 

groups 
- Counterfactual prediction 

Special  
Applications 

 

- Predictive power of economic theories 
- Completeness of economic theories 
- Handling of imbalanced data  
- Generation of artificial data 
- ML-augmented pre-analysis plans 
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Table 5. Yearly number of relevant finance publications that apply ML and their share relative to all publications in major finance journals 
This table presents the number of ML publications over time by journal rank. Panel A reports the absolute number of papers that apply ML and have been 
published in major finance journals per year in total and by journal rank. Panel B reports the share of these ML applications relative to the number of all 
publications in major finance journals per year in total and by journal rank. The means in the years 2010–2017 and 2018–2021 in Panel B are weighted by the 
number of publications. a, b, or c denote statistical significance of differences in proportions at the 5% level for the groups A+/A, A+/B, and A/B, respectively. 

Year 2010 2011 2012 2013 2014 2015 2016 2017 
Mean 
’10-’17 2018 2019 2020 2021 

Mean 
’18-’21 Total 

 Panel A: Number of ML Publications in Major Finance Journals 
Total 6 7 6 9 8 21 8 15 10 36 52 69 109 66.5 346 
A+ 0 0 0 2 0 2 0 1 0.6 4 8 8 14 8.5 39 
A 4 1 0 1 2 6 1 1 2.0 8 7 12 19 11.5 62 
B 2 6 6 6 6 13 7 13 7.4 24 37 49 76 46.5 245 

  
 Panel B: Share of ML Publications Relative to All Publications in Major Finance Journals 

Total 0.3% 0.3% 0.3% 0.4% 0.3% 0.9% 0.3% 0.6% 0.4% 1.4% 2.0% 2.3% 3.4% 2.3% 1.1% 
A+ 0.0% 0.0% 0.0% 0.7% 0.0% 0.7% 0.0% 0.3% 0.2%b 1.3% 2.4% 2.2% 3.4% 2.4% 1.1% 
A 0.6% 0.2% 0.0% 0.1% 0.3% 0.8% 0.2% 0.2% 0.3%c 1.2% 1.2% 1.9% 3.2% 1.9% 0.8% 
B 0.2% 0.5% 0.5% 0.5% 0.4% 0.9% 0.4% 0.8% 0.5%bc 1.5% 2.1% 2.5% 3.5% 2.5% 1.3% 
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Table 6. Distribution of ML applications in finance by research field and comparison to all publications in major finance journals  
This table presents the distribution of ML research applications in major finance journals by research field (single-digit JEL categories). The first column reports 
the results for the entire sample, while Columns 2–4 report the results separately for publications in journals ranked as A+, A, and B. Columns 5–8 report the 
same results for all publications in major finance journals. The last four columns report the z-statistics of z-tests for the difference in proportions. ***, **, or * 
denote statistical significance at the 1%, 5%, or 10% level. 

 

ML Publications  

in Major Finance Journals 
 

All Publications  

in Major Finance Journals 
 z-stat for Difference 

 (1) (2) (3) (4)  (5) (6) (7) (8)  (1)-(5) (2)-(6) (3)-(7) (4)-(8) 

 
All  A+ A B  All  A+ A B  All  A+ A B 

General Financial Markets (G1) 71.1% 66.7% 53.2% 76.3% 
 

47.1% 38.0% 36.1% 55.5%  
8.84*** 3.67*** 2.78*** 6.49*** 

Financial Institutions and Services (G2) 13.6% 12.8% 32.3% 9.0% 
 

25.4% 23.5% 31.3% 23.1%  
-5.03*** 1.56 0.15 -5.21*** 

Corporate Finance and Governance (G3) 14.2% 20.5% 14.5% 13.1% 
 

27.3% 38.3% 32.4% 21.3%  
-5.44*** -2.27** -2.99*** -3.12*** 

Behavioral Finance (G4) 0.9% 0.0% 0.0% 1.2% 
 

0.0% 0.0% 0.0% 0.0%  
9.72*** NA -0.11 9.64*** 

Household Finance (G5) 0.3% 0.0% 0.0% 0.4% 
 

0.1% 0.3% 0.2% 0.1%  
0.73 -0.35 -0.31 1.75*** 

Nobs 346 39 62 245  18,605 3,241 5,089 10,275  - - - - 

Chi-Squared Statistics (p-value): - - - -  - - - -  0.000*** 0.004*** 0.025** 0.000*** 



61 

 

Table 7. Distribution of ML applications in finance by application type for the entire sample 
and for publications in the different journal ranks  
This table presents the distribution of ML research applications in major finance journals by application 
type from our taxonomy. Panel A reports the results across all research fields. Panel B reports the results 
for each research field separately. The first column reports the results for the entire sample, while Columns 
2–4 report the results separately for publications in journals ranked as A+, A, and B. a, b, or c denote 
statistical significance of differences in proportions at the 5% level for the groups “A+ vs. A”, “A+ vs. 
B”, and “A vs. B”, respectively. 

 All  A+ A B 
  (1) (2) (3) (4) 

Panel A: Distribution of Application Types 
 n=346 n=39 n=62 n=245 
Superior and Novel Measures 25.1% 56.4%ab 32.3%ac 18.4%bc 
Economic Prediction Problems 69.1% 38.5%ab 62.9%ac 75.5%bc 
New Econometric Tools 5.8% 5.1% 4.8% 6.1% 
     

Panel B: Distribution of Application Types in each Research Field 
General Financial Markets (G1) n=246 n=26 n=33 n=187 
Superior and Novel Measures 22.0% 38.5%b 33.3%c 17.6%bc 
Economic Prediction Problems 71.1% 57.7% 63.6% 74.3% 
New Econometric Tools 6.9% 3.8% 3.0% 8.0% 
          

Financial Institutions and Services (G2) n=47 n=5 n=20 n=22 
Superior and Novel Measures 29.8% 80.0%ab 30.0%a 18.2%b 
Economic Prediction Problems 66.0% 0.0%ab 65.0%a 81.8%b 
New Econometric Tools 4.3% 20.0%b 5.0% 0.0%b 
          

Corporate Finance and Governance (G3) n=49 n=8 n=9 n=32 
Superior and Novel Measures 32.7% 100.0%ab 33.3%a 15.6%b 
Economic Prediction Problems 65.3% 0.0%ab 55.6%a 84.4%b 
New Econometric Tools 2.0% 0.0% 11.1% 0.0% 
          

Behavioral Finance (G4) n=3 n=0 n=0 n=3 
Superior and Novel Measures 100.0% NA NA 100.0% 
Economic Prediction Problems 0.0% NA NA 0.0% 
New Econometric Tools 0.0% NA NA 0.0% 
          

Household Finance (G5) n=1 n=0 n=0 n=1 
Superior and Novel Measures 0.0% NA NA 0.0% 
Economic Prediction Problems 100.0% NA NA 100.0% 
New Econometric Tools 0.0% NA NA 0.0% 

 

  



62 

 

Table 8. Mean excess citations of ML publications relative to all publications in major finance 
journals  
This table reports the mean excess citations of ML publications by field and application type. Excess 
citations are defined as the difference between actual citations and the average number of citations for all 
publications in major finance journals from the same year. Citation data come from Web of Science as of 
Sep 19, 2022. ***, **, or * denote statistical significance at the 1%, 5%, or 10% level. 

 
 

All 

Types 

Superior and 

Novel Measures 

Economic 

Prediction 
Problems 

New Econo-

metric Tools 

Full Sample n=346  3.0* 10.2***  1.2 -7.0* 
  

By Field:  

General Financial Markets (G1) n=246  2.3 9.3** 1.1 -8.0** 

Financial Institutions and Services (G2) n=47  2.4 1.0 3.7 -8.2 

Corporate Finance and Governance (G3) n=49  7.6** 24.2*** -0.9 13.7 

Behavioral Finance (G4) n=3 -5.3** -5.3** NA NA 

Household Finance (G5) n=1  -1.5 NA -1.5 NA 
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Figure 1. Comparison of the accuracy of hedonic pricing (OLS) and ML in predicting real 
estate asset prices  
This figure depicts the accuracy of traditional hedonic pricing (OLS) and ML in predicting real estate 
asset prices in the German residential housing market. On average, the ML-based price estimates are 
much closer to the actual prices than the OLS estimates are. The benefit of ML is most pronounced at 
the upper end of the price range, where OLS performs especially poorly. 
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Figure 2. Overview of common methods in supervised ML arranged by typical prediction 
performance and interpretability  
This figure gives an overview of the most common methods in supervised ML. The methods differ by 
complexity: more complex methods typically achieve higher prediction performance but are less interpret-
able. For numerical data, less complex methods tend to work well, while unconventional data (such as text, 
images, or videos) often require more complex methods. 
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Figure 3. Illustrations of a decision tree and a neural network  
This figure depicts a decision tree (Panel A) and a neural network (Panel B). The decision tree was 
trained for house price prediction. It reaches its prediction decision by evaluating the value of certain 
predictor variables at each split. Neural networks consist of multiple layers of neurons through which the 
given data are processed. The shown neural network uses a simple feed-forward architecture, which means 
that data only flow from left to right. 
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Figure 4. Prediction performance and average pricing errors of hedonic pricing (OLS) and 
ML methods  
Panel A depicts the prediction performance (R²) of traditional hedonic pricing (OLS) compared to differ-
ent ML methods. While most ML methods outperform OLS, the boosted regression trees method per-
forms best by far and almost doubles the OLS performance. Panel B shows the average pricing error 
(measured by mean absolute error [MAE]) for the best-performing ML method, boosted regression trees, 
and for the OLS baseline in the five price quintiles. In all quintiles, the boosted regression trees method 
significantly outperforms OLS. The reduction in pricing error from ML is most pronounced in the highest 
price quintile, where OLS performs relatively poorly. 
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Figure 5. Number of relevant publications in finance that apply ML by year  
This figure depicts how the number of papers that apply ML and have been published in major finance 
journals has evolved over time. Since 2018, we observe a strong increase in ML publications compared to 
the average of the previous years. 
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Appendix 

Table A1. Selection of public announcements of large financial institutions using ML in their day-to-
day business operations  
This table presents a selection of newswires and press releases from Nexis Uni that contain public announcements of 
large financial institutions using ML in their day-to-day business operations. 

Company Release Date Source Extract 

Axa Jul 21, 2021 MarketLine 
NewsWire 

“AXA UK has launched a new machine learning tool to accelerate 
as well as improve the accuracy of complex property claims” 

Bank of America Jan 13, 2022 PR News-
wire 

“Bank of America today announced the launch of CashPro Fore-
casting, a tool that uses artificial intelligence (AI) and machine 
learning (ML) technology to more accurately predict future cash 
positions across clients' accounts” 

Blackrock Apr 11, 2016 ENP News-
wire  

“BlackRock investment teams […] utilize technology-based tools 
and research methodologies such as machine learning, natural 
language processing, scientific data visualization and distributed 
computing to produce sustainable alpha.” 

Deutsche Bank Sep 23, 2022 MarketLine 
NewsWire 

“The solution leverages artificial intelligence and specified rules 
to calculate the risk value for each transaction. […] Our world-
wide network and the use of machine learning techniques allow 
us to deploy a global data set to reduce fraud.” 

HSBC Nov 6, 2019 Malaysia 
Economic 
News 

“HSBC has been able to deal promptly with any anomalous or 
suspicious transaction through the adoption of new technologies 
namely Artificial Intelligence (AI) and machine learning.” 

J.P. Morgan As-
set Management 

Dec 17, 2021 PR News-
wire 

“J.P. Morgan Asset Management has recently launched its first 
mutual fund employing a data science-driven investment process 
[…]. The investment process is driven by machine learning […]”  

State Street Jul 18, 2018 Business 
Wire 

“State Street Corporation (NYSE: STT) today announced the 
launch of State Street VerusSM, a mobile-first application that 
makes connections between news coverage and investors' hold-
ings through the application of big data, machine learning, natu-
ral language processing and human intel ligence. Verus is de-
signed to help investment professionals in the front office gain 
greater insights, mitigate risk, and generate alpha.” 

State Street Jun 22, 2021 Business 
Wire 

“State Street Corporation today announced it will implement a 
cloud-based, machine learning technology to transform private 
markets processing and document management.” 
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A.  Real Estate Price Prediction 

A.1 Data, Variables, and Methods 

In contrast to other asset classes such as equities or fixed income, no regular market prices exist 

in the real estate market. In many cases, transaction prices are also not publicly available, as they 

are the result of private negotiations. Instead, researchers often have to rely on list prices to study 

real estate price behavior. List prices are set by sellers or realtors to attract potential buyers and 

then merely serve as a starting point for the subsequent negotiation process. As such, list prices 

deviate from realized transaction prices. Empirical evidence from various real estate markets, 

however, shows that the deviations between list and transaction prices are relatively small: on 

average, list prices overestimate transaction prices by less than 10% (Yavas and Yang, 1995; 

Palmon, Smith, and Sopranzetti, 2004; Haurin et al., 2010). Hence, we work with the assumption 

that, especially over a longer time period, the bias from using list prices instead of transaction 

prices is negligible. 

We construct our sample based on a unique, proprietary dataset from a specialized German real 

estate data provider. The dataset consists of a comprehensive collection of detailed real estate 

listings for the entire German residential market from five German property portals and major 

newspapers between January 2000 and September 2020. We restrict our analyses to single-family 

houses, as they are the most common property type in the dataset. Table IA1 gives an overview 

of the available variables. For our sample, we first eliminate observations with missing values for 
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any continuous variable. To reduce the influence of outliers and data errors, we then truncate all 

continuous variables at the 0.01st and 99.99th percentiles.1 Our sample construction procedure 

leaves us with 4,076,951 observations. 

For the prediction of real estate prices, we follow the literature (for example, Mullainathan and 

Spiess, 2017) and choose the natural logarithm of the list price as our actual prediction target.2  

Table IA1. Overview of variables with definitions  
This table gives an overview of the variables used in our analysis and provides definitions. Our target 
variable that we want to predict is list price. There are multiple types of predictor variables: physical 
attribute variables, macro location variables, granular location variables, and offer variables. Variables 
that are available for only a limited subset of the sample are included in an additional specification. 

Variable Definition 
Original German 
Variable Name 

Target variable 
    List price Price of the property in EUR as given in the listing Preis 
Physical attribute variables 

    House type 
Type of house: detached, semi-detached, or 
terraced/townhouse 

Haustyp: EFH, DHH/ 
REH, RH 

    Size Size of the property in m² Wohnfläche 
    Rooms Number of rooms of the property Zimmer 
    Lot size Lot size of the property in m² Grundstücksfläche 
    Construction year Construction year of the building Baujahr 
Macro location variables 
    County The county where the property is located Landkreis 
Granular location variables 
    Horizontal  
    geocoordinate 

Precise latitude of the center of the city district implied 
by the property’s zip code 

Horizontale 
Geo-Koordinate 

    Vertical  
    geocoordinate 

Precise longitude of the center of the city district implied 
by the property’s zip code 

Vertikale 
Geo-Koordinate 

Offer variables 
    Offer year Year of the listing Angebotsjahr 

    Online listing 
Indicates whether the sale offer is listed on an online 
platform 

Online-Angebot 

    Seller type 
Seller type as stated in the listing: realtor, developer, or 
private owner 

Verkäufer 

 
Variables for additional specification (available for only a limited subset of the sample) 
    Patios Number of the property’s patios Terrassen 
    Balconies Number of the property’s balconies Balkone 
    Garages Number of garages belonging to the property Garagen 
    Parking lots Number of parking lots belonging to the property Kfz-Stellplätze 
    Bathrooms Number of the property’s bathrooms Bäder 

                                         
1 Given the huge size of our dataset and the already high data quality, we choose relatively small outlier percentiles. 
Using different percentiles has only a minor effect on the results. 

2 In unreported analyses, we use price or price per square meter as the prediction target. These alternative specifications 
produce qualitatively similar results but slightly lower prediction performance. 
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    Renovation status 
The property’s status of renovation: necessary, partly 
renovated, or renovated 

Zustand 

    Basement type 
The property’s type of basement: basement, livable, fully 
finished, or partially finished 

Art des Kellers 

    Balcony type The property’s type of balcony: balcony or loggia Art des Balkons 
    Leased lot Indicates whether the property’s lot is leased Erbbaupacht 
    Wintergarden Indicates whether the property has a wintergarden Wintergarten 
    Rooftop Indicates whether the property has a rooftop terrace Dachterrasse 

    Solar 
Indicates whether the property has solar panels on the 
roof 

Solaranlage 

    Other usage 
Indicates whether there is other usage (e.g., commercial) 
possible for the property 

Alternativnutzung 

    Hillside Indicates whether the property is located on a hillside Hanglage 
    Studio Indicates whether the property’s top floor is a studio Dachstudio 

    Large kitchen 
Indicates whether the property contains an extra-large 
kitchen 

Wohnküche 

    Recreation room 
Indicates whether there is a recreational room in the 
property 

Hobbyraum 

    Sauna Indicates whether there is a sauna in the property Sauna 
    Gallery Indicates whether the property contains a gallery Galerie 
    Fireplace Indicates whether there is fireplace in the property Kamin 

    Underfloor heat 
Indicates whether underfloor heating is available in the 
property 

Fußbodenheizung 

    Pool Indicates whether there is a pool on the property Schwimmbad 

    Hardwood floors 
Indicates whether the property’s rooms have hardwood 
floors 

Parkett 

    Prefab Indicates whether the building has been prefabricated Fertighaus 

    Separate flat Indicates whether a separate flat belongs to the property Einliegerwohnung 

    Attic finished Indicates whether the property’s attic is finished 
Ausgebautes 
Dachgeschoss 

    Garden Indicates whether there is a garden on the property Garten 
    Pond Indicates whether there is a pond on the property Teich 

 

In our main specification, we use the most relevant factors influencing real estate prices from the 

given variables. Physical attribute variables describe the characteristics of the property: general 

house type, size, number of rooms, lot size, and construction year. As a macro location variable, 

we use a property’s county to describe its approximate location within Germany.3 The granular 

location variables horizontal geocoordinates and vertical geocoordinates capture a property’s 

location more precisely. Note that they describe not a property’s exact location but the 

approximate center of the city district implied by the property’s zip code. They still capture, for 

                                         
3 In unreported analyses, we use city and state, in addition to and instead of county, to capture macro location effects. 
Prediction performance and conclusion are virtually unchanged. 
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instance, whether a property is located in a city center or in a suburb. Finally, offer variables 

describe offer-specific features: offer year captures time trends and price-level effects, online listing 

indicates whether the sale offer is listed on an online platform, and seller type describes who is 

selling the property (realtor, developer, or private owner). We include all categorical variables as 

dummy variables in our specification and finally arrive at 388 predictor variables. We also tested 

an alternative specification with a set of additional property characteristics, such as the number 

of balconies or bathrooms (see Table IA1), which are available for only a limited subset of our 

sample. The results were qualitatively similar to those of the main specification. 

To accurately assess and compare the out-of-sample prediction performance of different prediction 

methods, we divide the sample into two subsamples: training data and test data (also called hold-

out data). We train our prediction models on the training data and subsequently determine their 

prediction performance on the test data. Since the algorithm has not seen the test data before, 

the measured prediction performance serves as an adequate estimation of a model’s out-of-sample 

prediction performance. Many studies that use cross-sectional data assign the dataset’s 

observations into training and test data at random. However, our data exhibits a time component. 

A random assignment would imply that our ML models can learn from future information (look-

ahead bias): for instance, we would train on some observations from 2020 to predict prices from 

2000. Hence, our measured prediction performance would be biased upwards. To avoid this issue, 

we split our sample into disjoint time periods. Here, we follow common practice of panel studies 

that also must consider the temporal order in the data (for example, Gu, Kelly, and Xiu, 2020). 

We assign observations from 2000 to 2019 as training data and observations from 2020 as test 

data. Thus, we adopt the standpoint of a practitioner who uses all historical data to learn the 

pricing mechanism and predicts prices for the most recent observations. We use sample weights 

to take into account that the observations from 2019 are more informative for price predictions 

in 2020 than observations from 2000. More specifically, we weight the training data linearly 

depending on the offer year: observations from 2000 have a weight of 1, while observations from 

2019 have a weight of 20.4 

                                         
4 In unreported analyses, we also use alternative weighting schemes such as hyperbolic weighting. The results remain 
qualitatively unchanged. 
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Table IA2 shows summary statistics for the continuous variables in the total sample, the training 

sample, and the test sample. The differences in all variables other than list price are negligible. 

List prices in the test sample, which covers the most recent observations from 2020, are much 

higher than those in the training sample and total sample, which cover previous years, as a result 

of price-level effects. We account for such price-level effects by having the offer year variable in 

our specification and, as discussed above, by using year-dependent weights in the training data. 

Table IA2. Summary statistics for the continuous variables of the total sample and the 
training and test samples  
This table reports summary statistics for the continuous variables in our three samples: the total sample 
of all observations, the training sample on which we train our prediction models, and the test sample on 
which we evaluate prediction performance. The training sample consists of observations from 2000 to 
2019, while the test sample covers 2020. 

 Total Sample  Training Sample  Test Sample 

 Mean Std. Dev.  Mean Std. Dev.  Mean Std. Dev. 

List price (€) 271,971.01 258,099.78  266,406.95 251,083.40  393,075.20 359,215.65 

Size (m²) 166.83 87.48  166.60 87.16  171.95 93.93 

Rooms 5.81 2.31  5.80 2.28  6.05 2.82 

Lot size (m²) 1,204.10 3,704.06  1,200.11 3,691.19  1,290.81 3,972.95 

Construction 
year 

1,965.02 45.30  1,965.42 45.11  1,956.46 48.47 

Horizontal  
geocoordinate 

51.06 1.82  51.06 1.82  51.06 1.82 

Vertical  
geocoordinate 

9.46 2.01  9.45 2.01  9.63 2.07 

Offer year 2013.13 3.76  2012.81 3.54  2020.00 0.00 

N obs. 4,076,951 4,076,951  3,897,866 3,897,866  179,085 179,085 

To predict real estate prices, we apply linear regression with OLS (traditional hedonic regression) 

and various supervised ML methods. The pricing performance of the OLS estimates serves as our 

baseline against which we compare the performance of the different ML methods. We choose 

different classes of supervised ML methods that are widespread in the current literature and 

promise state-of-the-art prediction performance. Regularized linear regression is most similar to 

traditional OLS but introduces bias to potentially improve prediction performance. We apply the 

most common methods of regularized linear regression: LASSO, ridge, and elastic net. Tree-based 

methods are especially well suited for capturing nonlinearities and interaction effects. We also 

apply the following most common methods: decision tree, random forest, and boosted regression 
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trees. Finally, we leverage the common ensemble learning concept and build an ensemble model 

that returns the unweighted average of all other models’ predictions.5 We derive suitable 

hyperparameters for each ML model (such as the regularization parameter in LASSO) by using 

fivefold cross-validation.6 For a detailed description of the individual ML methods, see Section 2 

of the paper. In addition to the abovementioned methods, there are many more ML methods to 

make predictions. Currently, a very popular ML method is deep learning with neural networks. 

Neural networks, however, often do not perform particularly well for pure prediction based on 

original numerical data. Instead, they are the method of choice for unconventional data such as 

images, videos, or text (see Section 2 of the paper). In an unreported analysis, we nevertheless 

trained a basic feed-forward neural network on our data. As expected, it not only achieved worse 

prediction performance compared to the other methods but also required much higher 

computational effort. 

A.2 Prediction Results and Interpretation 

Various metrics exist to assess prediction performance: R2, mean squared error, mean absolute 

error, etc. Since R² is also a common metric in many empirical studies in economics and hence 

enables quantitative comparisons, we first focus on R² in our assessments of prediction 

performance. The different methods’ prediction performance on the test data is most meaningful 

in assessing the expected out-of-sample prediction performance. To derive 95% confidence 

intervals of the test data performance, we follow Mullainathan and Spiess (2017) and use 

bootstrap sampling with fixed prediction functions (see their Online Appendix for a more detailed 

description of the method). We further calculate the relative improvement of each method over 

the OLS baseline by quintile of property price (based on mean squared error). In addition to 

reporting the test data metrics, we report the performance of each method on the training data 

                                         
5 In an unreported analysis, we also build a more complex ensemble model that uses a weighted average of the other 
models’ predictions. We follow the linear regression approach from Mullainathan and Spiess (2017) to derive the optimal 
weights. The complex ensemble model puts a large weight on the boosted regression tree method and hence performs 
very similarly. 

6 Common practice in literature is five- to tenfold cross-validation. Given our large dataset and the resulting long 
computation times, we choose the computationally less demanding fivefold cross-validation. 
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(in-sample) to allow comparisons with traditional studies and to illustrate the amount of 

overfitting.7 

Table IA3 shows the prediction performance of the OLS baseline and the different ML methods. 

The table reveals five main results. First, the prediction performance on the test data is lower 

than that on the training data for every method. This observation illustrates the effect of 

overfitting: prediction models can closely fit the given training data by picking up noise, so their 

performance is lower for test data that the algorithm has not seen before. Thus, our results 

highlight the well-established fact that the (in-sample) performance of prediction models on 

training data is upwards biased, so we need to evaluate them on held-out test data to derive 

unbiased estimates for out-of-sample prediction performance. 

Table IA3. Prediction performance of OLS and different ML methods  
This table compares the prediction performance of the OLS baseline and different ML methods on the 
training and test data. The 95% confidence interval of test data R² is reported in brackets. The table 
further shows the relative improvement of each method’s prediction performance over the OLS baseline 
by quintile of property price. The relative improvements are calculated from mean squared error values. 

 Prediction 
performance (R²) 

 Relative improvement over OLS 
by quintile of property price 

Method 
Training 

data 
Test 
data 

 
1st 2nd 3rd 4th 5th 

OLS (baseline) 56.5% 39.9% 
[39.4%, 40.4%] 

 - - - - - 

Decision Tree 58.5% 51.4% 
[50.9%, 51.8%] 

 -30.1% 9.8% 45.6% 40.7% 20.1% 

LASSO 58.6% 56.1% 
[55.7%, 56.5%] 

 -34.2% 35.0% 45.0% 44.4% 34.2% 

Elastic Net 58.6% 56.2% 
[55.8%, 56.6%] 

 -33.6% 34.4% 44.7% 44.5% 34.6% 

Ridge 58.6% 56.3% 
[55.9%, 56.7%] 

 -33.0% 33.8% 44.5% 44.6% 35.0% 

Random Forest 70.2% 63.6% 
[63.2%, 63.9%] 

 -6.7% 31.0% 56.2% 55.8% 45.7% 

Ensemble 71.3% 64.5% 
[64.2%, 64.8%] 

 2.9% 45.7% 55.1% 52.4% 43.9% 

Boosted Regression 
Trees 

89.8% 76.9% 
[76.7%, 77.2%] 

 23.4% 39.4% 66.3% 73.8% 76.2% 

Second, every ML method outperforms the OLS baseline on average, and more complex ML 

models achieve higher prediction performance on the test data. Regularized linear regression 

                                         
7 Overfitting refers to the phenomenon that complex prediction methods can flexibly adapt to the given data and 
possibly pick up noise that does not generalize beyond the training data. 



8 

 

methods (LASSO, ridge, elastic net) and the simple decision tree method achieve only modest 

improvements over the OLS baseline. More complex methods (random forest, boosted regression 

trees, ensemble), however, can strongly improve the prediction performance. The performance 

ranking of the different methods is also in line with typical expectations (see Figure 2 in Section 

2 of the paper). Our results strongly indicate that the nonlinearities and interaction effects 

captured by more complex ML methods contain relevant information for real estate pricing. 

Third, most ML methods do not outperform OLS in every price quintile. Especially in the lowest 

quintile, only the boosted regression trees method and the ensemble model achieve superior 

prediction performance. Hence, we need complex ML methods to achieve not only maximal 

performance on average but also consistent outperformance relative to OLS over the entire price 

range. 

Fourth, the boosted regression trees method outperforms the OLS baseline and every other ML 

method on average as well as in every price quintile. Given that boosted regression trees is a 

highly optimized ML method that captures complex nonlinearities and interaction effects, this 

result further strengthens our previous indication that nonlinear effects are relevant for real estate 

pricing. 

Fifth, the outperformance of our best-performing ML method, boosted regression trees, 

monotonically increases by price quintile. For low-priced properties, the improvement induced by 

ML is relatively modest even with the best ML method. For high-priced properties, however, the 

prediction performance of ML dramatically improves over that of OLS. Hence, our results indicate 

that nonlinearities and interaction effects are most relevant for properties at the upper end of the 

price range. 

Having established that advanced ML models outperform OLS in real estate price prediction, we 

now analyze the economic magnitude of our findings. To make statements about economic 

relevance, R² values are less suited. Instead, we use metrics that are more interpretable. First, the 

mean absolute percentage error (MAPE) quantifies by what percent a model’s predictions deviate 

from the actual prices on average. Based on the MAPE, we calculate the improvement of each 

ML model over the OLS baseline on average and per price quintile, and we report their statistical 

significance. Table IA4 shows our results. 
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The results from using the MAPE metric are consistent with those from using R². Overly simple 

methods (LASSO, ridge, elastic net, and decision tree) achieve a statistically significant but not 

economically meaningful improvement over the OLS baseline, with a maximum improvement of 

3.6 percentage points. The more complex methods perform much better. The improvements in 

pricing accuracy from the best-performing ML method, boosted regression trees, are not only 

statistically significant but also economically large. On average, we achieve a pricing error of 

26.8% with boosted regression trees compared to 43.6% with OLS. While the average reduction 

in pricing error by 16.8 percentage points is already highly meaningful, the improvements from 

ML become even larger at the upper end of the price range. In the highest price quintile, boosted 

regression trees reduce the average pricing error by 26.2 percentage points. Hence, complex ML 

methods, especially the boosted regression trees method, yield price predictions with much higher 

accuracy than the OLS approach from hedonic pricing by considering nonlinearities and 

interaction effects. 

Table IA4. Improvements in prediction accuracy for different ML methods  
This table shows the MAPE values (in %) for OLS and different ML methods as well as the improvements 
over the OLS baseline on average and by quintile of property price. The numbers in brackets show the 
respective t-values. 

Method 
MAPE 
(%) 

Change in 
MAPE 

over OLS 

 
 

Change in MAPE over OLS 
by quintile of property price 

1st 2nd 3rd 4th 5th 
OLS (baseline) 43.59 

 
-  - - - - - 

Decision Tree 40.02 -3.57 
[-16.41] 

 13.91 
[17.93] 

0.65 
[1.18] 

-12.66 
[-43.22] 

-11.70 
[-43.40] 

-7.80 
[-29.48] 

LASSO 41.17 -2.42 
[-8.44] 

 20.06 
[22.40] 

-3.76 
[-4.48] 

-9.07 
[-21.11] 

-10.24 
[-25.36] 

-8.74 
[-22.90] 

Elastic Net 41.08 -2.51 
[-8.76] 

 19.70 
[22.04] 

-3.63 
[-4.32] 

-9.04 
[-21.10] 

-10.34 
[-25.71] 

-8.88 
[-23.30] 

Ridge 41.01 -2.59 
[-9.04] 

 19.38 
[21.72] 

-3.53 
[-4.20] 

-9.00 
[-21.05] 

-10.39 
[-25.91] 

-9.04 
[-23.75] 

Random Forest 34.72 -8.87 
[-42.29] 

 4.00 
[5.45] 

-4.44 
[-8.05] 

-14.01 
[-48.56] 

-15.44 
[-57.74] 

-14.30 
[-54.38] 

Ensemble 34.85 -8.74 
[-40.86] 

 1.21 
[1.64] 

-8.21 
[-14.34] 

-12.22 
[-40.69] 

-12.56 
[-45.41] 

-11.77 
[-44.16] 

Boosted 
Regression Trees 

26.81 -16.79 
[-82.84] 

 -12.73 
[-18.35] 

-7.58 
[-13.72] 

-16.07 
[-55.78] 

-21.37 
[-80.40] 

-26.19 
[-100.92] 
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To quantify the value of superior prediction performance in monetary units (EUR), we use the 

mean absolute error (MAE) metric calculated from the different methods’ price predictions. 

Again, we also determine the improvement of each ML method over the OLS baseline on average 

and per price quintile and report their statistical significance. Table IA5 shows our results. While 

the OLS estimates exhibit an average pricing error of over 176,000 EUR, the boosted regression 

trees predictions lower the error to approximately 94,000 EUR. Given that the average property 

price in the sample is 393,000 EUR, the reduction in pricing error by more than 82,000 EUR is 

economically very large. In the highest price quintile, boosted regression trees reduce the average 

pricing error by more than 240,000 EUR for an average property price of approximately 884,000 

EUR. Hence, we conclude that ML, especially the boosted regression trees method, is able to 

reduce the prediction error in real estate pricing in a statistically significant and economically 

meaningful way. 

Table IA5. Improvements in prediction accuracy for different ML methods in monetary 
units 
This table shows the MAE values in EUR for different ML methods as well as the improvements over the 
OLS baseline on average and by quintile of property price. The numbers in brackets show the respective 
t-values. 

Method 
MAE 
(EUR) 

Change in 
MAE 

over OLS 

 
 

Change in MAE over OLS 
by quintile of property price 

1st 2nd 3rd 4th 5th 
OLS (baseline) 176,435.44 

 
-  - - - - - 

Decision Tree 148,592.85 -27,842.60 
[-27.73] 

 17,749.34 
[34.61] 

-481.23 
[-0.43] 

-40,821.12 
[-42.78] 

-51,193.06 
[-43.82] 

-63,909.14 
[-16.17] 

LASSO 148,684.30 -27,751.14 
[-22.45] 

 13,922.58 
[22.49] 

-9,188.25 
[-5.53] 

-29,114.45 
[-20.78] 

-45,394.28 
[-26.31] 

-68,561.98 
[-13.91] 

Elastic Net 148,399.48 -28,035.96 
[-22.68] 

 13,712.44 
[22.20] 

-8,893.75 
[-5.34] 

-29,021.97 
[-20.79] 

45,868.37 
[-26.68] 

-69,692.01 
[-14.13] 

Ridge 148,113.83 -28,321.62 
[-22.95] 

 13,582.91 
[22.04] 

-8,676.93 
[-5.52] 

-28,919.77 
[-20.75] 

-46,111.37 
[-26.91] 

-71,078.51 
[-14.43] 

Random Forest 127,941.27 -48,494.17 
[-50.08] 

 8,307.91 
[17.04] 

-10,961.45 
[-9.95] 

-45,072.15 
[-47.92] 

-68,217.87 
[-58.96] 

-126,002.79 
[-32.92] 

Ensemble 133,280.72 -43,145.73 
[-43.77] 

 1,971.02 
[4.07] 

-18,403.97 
[-16.11] 

-39,097.61 
[-39.94] 

-55,465.77 
[-46.43] 

-104,181.39 
[-26.93] 

Boosted 
Regression 
Trees 

94,385.53 -82,049.91 
[-89.75] 

 -4,671.03 
[-9.91] 

-17,169.22 
[-15.55] 

-51,847.87 
[-55.23] 

-95,042.88 
[-82.88] 

-240,942.39 
[-66.37] 
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A.3 Concluding Remarks  

We applied state-of-the art ML methods to predict real estate prices based on property 

characteristics, location, and offer details. As our data source, we used a proprietary set of real 

estate listings in Germany from various online and offline sources. While simple methods such as 

LASSO or decision tree already perform superior to traditional hedonic pricing with OLS, we 

found that the more complex boosted regression trees method yields much lower pricing errors. 

While the average pricing error is almost 44% using OLS, boosted regression trees lowers that 

value to less than 27%. In monetary units, the improved pricing accuracy corresponds to a 

reduction in pricing error by approximately 82,000 EUR for an average property price of 393,000 

EUR. We infer that nonlinearities and interaction effects captured by complex ML methods are 

relevant for real estate pricing. They become even more important at the upper end of the price 

range: in the highest price quintile, ML reduces the average pricing error by more than 240,000 

EUR for an average property price of approximately 884,000 EUR. 

The biggest limitation of our approach is the reliance on listing data instead of transaction data. 

List prices often serve as a mere starting point in the subsequent price negotiation. Depending on 

the state of the market at the time of selling, the final transaction price might be higher or lower. 

Furthermore, it is possible that certain listed properties are not sold at all. Empirical evidence, 

however, indicates that the differences between list prices and transaction prices are rather small 

on average. Nevertheless, future studies might look into repeating our prediction exercise with 

superior transaction data where available. 

Future research might also consider integrating further data sources to enhance prediction 

performance. For instance, macroeconomic data such as GDP or inflation data could provide 

additional information that is relevant for real estate prices but is not yet included in our dataset. 

Another future research avenue is model interpretation. We only predicted prices without 

analyzing how our ML models arrive at their predictions and which influencing factors are most 

important. To identify relevant predictor variables, feature importance methods such as 

permutation importance have become common. However, most feature importance methods 

produce highly misleading results, especially if strong dependencies exist between the predictor 

variables (Hooker and Mentch, 2019). As we cannot rule out relevant dependencies between our 
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real estate variables (for instance, size and number of rooms are highly correlated), specialized 

methods such as conditional permutations are necessary in real estate pricing. 

Finally, it might be interesting to see whether the large benefits of using ML over using OLS for 

real estate price prediction also hold in countries other than Germany. 
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