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Option Pricing under the Mixture of

Distributions Hypothesis

Abstract

This paper investigates the pricing of stock index options on the Deutscher

Aktienindex (DAX) traded on the Deutsche Terminb�orse (DTB) under the

mixture of distributions hypothesis. Motivated by the poor empirical behavior

of the lognormal distribution assumption under the Black/Scholes model, an

option pricing model is constructed by assuming a mixed lognormal distribu-

tion for the underlying asset price. This assumption underlies both theoret-

ical and empirical reasoning. From a theoretical point of view, using a mix-

ture of distributions implies an option pricing model with randomly changing

volatility. From an empirical point of view, observed phenomena like fat tailed

and skewed asset price distributions must be explained. As already shown by

Melick/Thomas (97), the broader set of possible shapes of the mixed lognor-

mal distribution explains the empirical asset price distribution better than the

simple lognormal distribution.

The option pricing formula under the mixture of lognormal distributions is

both theoretically and empirically compared to the Black/Scholes formula.

Fortunately, the corresponding option pricing formula is simply a linear com-

bination of Black/Scholes option prices. Nevertheless, additional features like

the probability of future extreme negative underlying price movements are

incorporated into the pricing formula.

The empirical performance of the mixed lognormal option pricing formula is

by construction at least as good as the Black/Scholes formula, since the latter

is a special case of the former. Additionaly, the systematic overpricing for

out of money calls and the systematic underpricing for in the money calls is

avoided by the mixed option pricing model.
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1 Introduction

Since the work of Black/Scholes (73) numerous tests of their option pricing model have

been carried out. Besides the deviation from observed and theoretical option prices in

these tests, the most stringent result is the calculation of an implied volatility smile (eg.

Chiras/Manaster (78)). Because Black/Scholes (73) assume a constant volatility for the

derivation of their option pricing formula, the existence of a volatility smile makes the

empirical application of their formula questionable.

Recent research tried to explain the volatility smile by market imperfections like transac-

tion costs. In the absence of arbitrage opportunities, the price St of any security equals

its discounted expected terminal value ST , where expectation is taken with respect to the

equivalent martingale measure Q:

St = EQ
t

h
ST e

�r(T�t)
i
:

Longsta� (95) used this relationship to perform what he called the martingale restriction

test. From the Black/Scholes formula he calculated the implied index value St and the

implied volatility � of the lognormal distribution. Comparison between observed and

implied index values shows, that the latter are almost always higher. Neumann/Schlag

(96) obtain similar results for the German market. The interpretation is, that due to

transaction costs, the duplication of the underlying by a portfolio of options is more

expensive than buying the underlying itself. Regressions of the price di�erences on the

bid ask spread show that this interpretation is at least one of the causes.

Since transaction costs are nearly constant over time, the generated Black/Scholes volatil-

ity smile should also be constant over time. Jackwerth/Rubinstein (96) show that this is

not the case. Indeed the volatility structure changed signi�cantly around the 1987 mar-

ket crash. Therefore they attribute nearly all of the smile to shifts in probability beliefs

which can not be adequately represented by the lognormal distribution. The nonparamet-

ric probability distribution calculated using Rubinstein's (94) method indeed has a fat left

tail. This probability mass of extreme events, which is interpreted as a crash{o{phobia

phenomenon, can not be represented by a lognormal distribution.

Melick/Thomas (97) report similar problems for the lognormal distribution using Amer-

ican oil futures options during the gulf crisis. They show that a mixture of lognormal

distributions is able to represent the crash{o{phobia phenomenon. Empirically, this ap-

proach leads to better oil future option prices than the Black/Scholes model.

The purpose of this paper is to use a mixture of lognormal distributions for the pricing
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of European index options. Therefore, similar to Melick/Thomas (97), the parameters

of the mixed lognormal distribution are estimated by minimizing the squared di�erence

between observed and theoretical option prices. The resulting distributions and the pricing

di�erences are then compared to the Black/Scholes model. Furthermore, the option pricing

formula underlying the mixed lognormal distribution is derived and compared to the

Black/Scholes formula. The additional parameters under the mixed lognormal distribution

allow for an incorporation of extreme underlying price movements.

The rest of the paper is organized as follows. In Section 2 we describe the mixed log-

normal probability distribution and derive the corresponding option pricing formula. For

the sake of simplicity, we consider a mixture of two lognormal distributions. The result-

ing option pricing formula is interpreted and its theoretical features are compared to the

Black/Scholes formula. In Section 3 we describe the data and some methodological as-

sumptions used for the empirical study. In Section 4, the empirical results are presented

and Section 5 summarizes and concludes.
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2 Option pricing under a mixed lognormal distribu-

tion

In the absence of arbitrage opportunities, European{style options can be priced without

any assumption about the underlying price process by duplicating their state dependent

payo�s using the observed prices of the basis assets. This approach results in what is

known as risk neutral valuation, where the price Ct(St;X) of a European option equals

its discounted expected terminal value max(ST �X; 0), expectation taken with respect to

the equivalent martingale measure Q:

Ct(St;X) = EQ
t

h
max(ST �X; 0)e�r(T�t)

i
:

Black/Scholes (73) assume that the asset price ST is lognormally distributed using

f logQ (ST ;�; �) =
1p

2��ST
� e
�
�

(ln ST��)
2

2�2

�
;

with � = ln(St) + (r � �2

2
)(T � t);

� =
q
�2 � (T � t);

which results in the well known Black/Scholes option pricing formula,

C log
t (St;X) = St �N(d1) �X � e�r(T�t) �N(d1 � �

p
T � t);

with d1 =
ln(St

X
) + r(T � t) + 1

2�
2(T � t)

�
p
T � t

:

Since the lognormal distribution is not appropriate to represent the real asset price distri-

bution (especially in the lower left tail), the extension to a mixed lognormal distribution

is regarded. In its simplest case, a mixed distribution is a linear combination of simple dis-

tribution functions. For the sake of simplicity we regard a mixture fmix
Q of two lognormal

distribution functions f log1 , f log2 with parameters �i, �i (i = 1; 2) and weights �1 + �2 = 1

(�1 � 0, �2 � 0):

fmix
Q (�1; �1; �2; �1; �2) = �1f

log
1 (�1; �1) + (1 � �1)f

log
2 (�2; �2):

The mixed distribution is achieved by the superposition of the distributional components

with regard to the probability �i of each component f logi . The mixing weights �i can

be interpreted as the probability distribution of the parameters �i, �i for the lognormal

distribution. Consequently, the assumption of a mixed distribution leads to randomly

changing parameters.
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From a theoretical point of view, following Harris (87), in a model where a �xed number

of agents trade in response to new information the mixing variable can be interpreted

as the number of information events occuring each day. Ignoring the evolution of infor-

mation and the generated transactions, the approach presented here can be compared to

models with stochastically changing volatility. Merton (76) for example assumes that the

stock price performs random jumps. Other authors, e.g. Hull/White (87), provide an own

di�usion process for the volatility. The approach presented here may be interpreted as

consisting of two di�usions for the price process with di�erent volatility parameters. Then

one can choose between these two di�usions with probability �1 and (1��1), respectively.

Consequently volatility changes randomly over time. Since further knowledge about the

corresponding price process is not necessary for the valuation of European options, this

question is not adressed any further here.

The corresponding option pricing formula is simply a linear combination of Black/Scholes

option prices with respect to the distributional components of the mixture:

Cmix
t (St;X) = e�r(T�t)

Z
1

�1

max(ST �X; 0)fmix
Q (ST )dST

= e�r(T�t)
�Z

1

�1

max(ST �X; 0)�1f
log
1 (ST )dST

+
Z
1

�1

max(ST �X; 0)(1 � �1)f
log
2 (ST )dST

�

= �1C
log
t (S1

t ;X; �1) + (1 � �1)C
log
t (S2

t ;X; �2):

The parameters S1
t and S2

t being the discounted expected values of the lognormal distri-

bution components1 are determined by the martingale restriction for the underlying price

St:

e�r(T�t)EQ
t [ST ] = �1S

1
t + (1 � �1)S

2
t = St:

Consequently the observed underlying price St enters the option pricing formula by using

S2
t =

St � �1S
1
t

(1 � �1)
:

Without loss of generality we can assume, that S1
t < S2

t which is equivalent to S1
t < St.

Then �1 can be interpreted as that part of the probability distribution of the underlying

asset price, which is mainly attributed to low asset prices. A crash{o{phobia phenomenon

should then be represented by the shape of the mixture component f log1 and the weight �1

given to low asset prices. The degree of crash{o{phobia only depends on the parameters

S1
t and �1 of the mixture component f log1 . A low level of S1

t (compared to St) implies a

1The expected value of a lognormally distributed variable S1T is EQ1

t [S1T ] = e
�1+

�2
1

2 . The discounted

expected value is S1t = e�r(T�t) �E
Q1

t [S1T ].
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signi�cant drop of the underlying price in case of a crash. The level of �1 is proportional

to the possible price range for the crash.

But option prices depend on the risk associated with the whole probability distribution of

underlying prices and not only on downside risk corresponding to the �rst distributional

component. Therefore, the volatilities of both distributional components enter the mixed

option pricing formula. Unfortunately, there is no single measure of underlying risk enter-

ing the option pricing formula. The appropriate risk{measure is the variance of the mixed

probability distribution. In Appendix A we show for the variance of the mixed underlying

price distribution:

V arQ(ST ) = �1 � V arQ1(ST ) + (1� �1) � V arQ2(ST )

+�1 � (1 � �1)
�
EQ1(ST )� EQ2(ST )

�2
:

Obviously, the risk corresponding to the mixed probability distribution of underlying

prices in T consists of the weighted dispersions of the component distributions and the

distance between the modes of these distributions.

Having this information about the composition of total risk of the mixed distribution, it

is possible to calculate the contribution of the �rst distributional component to the total

risk of the mixed distribution. Therefore, we de�ne the share of downside risk SDR as

SDR =
V arQ(ST )� (1� �1) � V arQ2(ST )

V arQ(ST )
:

Both the variance of the �rst distributional component and the distance between the

modes of the two distributions contribute to this de�nition of downside risk. Consequently,

SDR may be a good indicator for the inuence of the �rst distributional component to

the pricing of options.

So the approach of a mixed probability distribution is quite easy and results in an option

pricing formula similar to the Black/Scholes model. Nevertheless, this approach incorpo-

rates the possibility of future extreme underlying price movements. The empirical analysis

should show whether two mixture components are su�cient for the pricing of DAX index

options. If not, an extension of the mixed lognormal option pricing formula for multiple

mixture components is straightforward.
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3 Data and methodology

The basic sample for this study consists of all best bid and best ask quotes for DAX

options traded on the DTB for the �rst six months of 1994. The quotes are time-stamped

to fractions of a second. They were considered good until changed. This yields a time-

series of simultaneous best bid and best ask prices. We use the midpoint between bid and

ask as an estimate of the true value of the option. The underlying DAX prices from the

Kurs{Informations{Service{System (KISS) are time{stamped to the nearest minute.

For the �nal sample, only option price observations with remaining time to maturity of

at least �ve trading days are considered. We then select one option price observation per

trading day from the minute with the highest aggregate quotation activity per day2. The

option prices are then matched with the DAX prices for the corresponding minute. Finally,

for each option series consisting of options with di�ering strike prices but equal maturity,

there remains one series of observations per trading day. The descriptive statistics for our

�nal sample are given in table 1.

There is a total of 7263 observations for calls in 485 series and 6955 observations for puts

in 499 series, yielding an average of 14.97 options per series for calls and 13.94 for puts.

At least six individual options were available for all the estimations with a maximum of

30 for calls and 29 for puts. Time to maturity ranged from seven calendar days to about

nine months for both option types. As expected, the average moneyness of the options

de�ned as the di�erence between the observed index level and the strike price divided by

the strike price is close to zero for both puts (0.0176) and calls (0.0197).

The riskless interest rate used for calculating theoretical option prices is estimated by the

put{call parity as suggested by Shimko (93) using the two pairs of put and call options

closest at the money with identical maturity for each series.

The parameters for the mixed lognormal distributions are calculated for each series by

minimizing the sum of squared di�erences between observed and theoretical option prices:

min
�1;S

1
t ;S

2
t ;�1;�2

NX
i=1

�
Ci � Cmix

i (�1; S
1
t ; S

2
t ; �1; �2)

�2
:

Since market imperfections are not considered, we explicitly impose the martingale re-

striction by using the observed asset price St with S2
t =

St��1S
1
t

(1��1)
: Parameter estimates are

calculated for each option series by performing a gridsearch with non-linear regressions on

observed and theoretical option prices. For the special case of only one mixture component

we achieve the simple lognormal distribution.

2Trading activity is measured by the number of quotes per minute.
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Table 1: Descriptive statistics for the �nal sample

Calls (485 series)

Variable Mean Std Dev Minimum Maximum

Na 14.97 5.39 6.00 30.00

Tb 93.26 66.12 7.00 260.00

MONEYc 0.0197 0.0819 -0.1649 0.3904

SPREADd 0.0772 0.0898 0.0036 1.7113

Puts (499 series)

Variable Mean Std Dev Minimum Maximum

Na 13.94 4.75 6.00 29.00

Tb 97.03 69.32 7.00 262.00

MONEYc 0.0176 0.0690 -0.1716 0.3736

SPREADd 0.1083 0.1616 0.0367 1.9683

aNumber of observations per series. The total number of call (put) price observations is 7263 (6955).
bTime to maturity in days.
cRelative moneyness calculated for each individual option as (S�X)

X
with X as the exercise price and

S as the observed DAX price.
dMean relative spread calculated for each individual option as 2 (BAP-BBP)/(BAP+BBP) with BAP

(BBP ) as the best ask (bid) price.
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4 Empirical results

The empirical part of the paper compares the ability to explain option prices under the

mixed lognormal distribution to the Black/Scholes distribution assumption. Therefore,

several questions are examined. First, we compare the pricing error of the mixed lognormal

formula to the pricing errors of the Black/Scholes formula. We �nd, that in most times

the Black/Scholes formula is adequate for the pricing of DAX index options. But there are

situations where the pricing may be signi�cantly improved when using a mixed lognormal

distribution. These situations are analyzed in section 4.2. The analysis shows, that the

mixed lognormal approach improves pricing by the additional probability mass of the �rst

mixture component in regions of low underlying prices. Consequently, these situations

are abnormal in the sense that investors seem to expect a large decline of underlying

prices to be possible. Finally, the shape of the corresponding probability distributions are

considered in section 4.3.

4.1 Comparison of the pricing errors

In this section, the pricing di�erences using the mixed lognormal distribution and the

single lognormal distribution are compared. Figure 1 shows the relative pricing error
Clog

�C
C

for the Black/Scholes model with respect to the moneyness of the option. As was

also shown by Neumann/Schlag (96) for the German market, the Black/Scholes model

systematically underprices (slightly) in the money calls and overprices (deep) out of money

calls. This is not the case for the mixed lognormal model. Figure 2 shows the relative

pricing error Cmix
�C

C
for the mixed lognormal model. At �rst glance, comparison with

�gure 1 shows, that an increased number of out of money options are underpriced than

before.

Since for �1 = 0 both formulas are identical, only options with a clear pricing improve-

ment under the mixed lognormal formula should be considered. Therefore, �gure 4 shows

the relative pricing error for options with improved pricing performance (�1 > 0) under

the mixed lognormal formula. The corresponding option prices under the Black/Scholes

formula are plotted in �gure 3. Comparison of both �gures shows, that under the mixed

lognormal distribution the systematic mispricing of the Black/Scholes formula is weak-

ened for both overpriced out of money options and underpriced in the money options in

the direction of a symmetric pricing error for both types of options. Therefore, the source

of remaining mispricing under the mixed lognormal distribution may at least partially

be explained as being random. The characteristics of the options with improved pricing
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- 0 . 2 - 0 . 1 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4

Figure 1: Relative pricing errors with respect to moneyness for the Black/Scholes formula.

- 0 . 2 - 0 . 1 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4

Figure 2: Relative pricing errors with respect to moneyness for the mixed lognormal

formula.
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- 0 . 2 - 0 . 1 0 . 0 0 . 1 0 . 2 0 . 3

Figure 3: Relative pricing errors with respect to moneyness for the Black/Scholes formula

with �1 > 0.

- 0 . 2 - 0 . 1 0 . 0 0 . 1 0 . 2 0 . 3

Figure 4: Relative pricing errors with respect to moneyness for the mixed lognormal

formula with �1 > 0.
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- 0 . 2 - 0 . 1 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4

Figure 5: Relative pricing errors with respect to moneyness with �1 = 0.

performance are shown in table 2. Comparison with table 1 shows, that on average the

pricing of options with longer maturity and lower moneyness is improved. For 1794 out

of 7263 options (in 132 out of 485 series), the mixed lognormal formula performs better

than the Black/Scholes formula. Figure 5 shows those options where no pricing improve-

ment could be achieved. These options are still priced according to the Black/Scholes

formula. Especially deep in the money options have a good pricing performance under

the Black/Scholes model.

So the �rst result is, that the mixed lognormal formula never worsens the pricing per-

formance when compared to the Black/Scholes model. This is an implication of the con-

struction of the mixed lognormal model, which includes for �1 = 0 the Black/Scholes

model as a special case. For options where a pricing improvement is achieved, the pattern

of systematic mispricing by the Black/Scholes formula is avoided. But out of money calls

still have a larger pricing error than in the money calls. The reason for this pricing im-

provement comes from the exible shape of the mixed probability distribution especially

in the range of low underlying prices, as will be shown later.

Additionally to the graphical analysis, the pricing errors are considered in greater detail

for the whole sample in table 3 and for a reduced sample containing only observations

with improved pricing performance (�1 > 0) in table 4.
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For the whole sample, the mean relative pricing error between mixed lognormal and

observed option prices, C
mix
�C

C
, is 2:1%. The mixed lognormal option prices are on average

2:1% higher than the observed prices. Comparison between mixed and Black/Scholes

relative option pricing errors shows, that the former perform on average better. Since

the extreme underpricing of 77:62 points is identical under both models, the conclusion

is that for the corresponding option no pricing improvement could be achieved. But the

maximal overpricing is reduced from 37:24 to 31:89 under the mixed lognormal model. The

maximum di�erence of 0 for the sum of squared pricing errors for the mixed lognormal

and the Black/Scholes model,
P
(Cmix � C)2 � P

(C log � C)2, in table 3 also con�rms

the expected improvement under the mixed lognormal model. Consequently the mixed

lognormal option pricing formula performs slightly better than the Black/Scholes formula

for the considered period.

Since both models are identical for �1 = 0, the outperformance of the mixed lognormal for-

mula is observed in table 4 for the reduced sample with �1 > 0. Clearly, the improvement

is much better. Whereas the Black/Scholes formula overprices those options on average by

3:4%, the mixed lognormal formula underprices those options on average by only 0:82%.

Obviously, the pricing improvement of the mixed lognormal formula for the whole sam-

ple is rather poor. But seperating observations with improved pricing performance from

those still priced according to the Black/Scholes formula yields a much better pricing

improvement. One possible conclusion from this observation is, that in most times the

Black/Scholes formula is adequate for the pricing of DAX index options. But there are

situations where the lognormal distribution is not able to represent the investors proba-

bility assessments correctly. This leads to better theoretical option prices under the more

exible mixed lognormal distribution assumption.

4.2 Situations with improved pricing performance under the

mixed lognormal distribution

The following analysis of the parameters S1, S2, �1, �2, �1 of the mixed lognormal for-

mula shows, that pricing performance is improved almost in situations with additional

probability mass in regions with low asset prices. Table 5 shows some descriptive statistics

for those parameters. Since for �1 = 0 the parameters S1 and �1 have no meaning, the

corresponding values are only shown for �1 > 0 in table 6.

The tables document that for �1 > 0 the expected underlying price of the second log-

normal distribution is always higher than the observed underlying price. Only for the
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0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8

Figure 6: Volatility di�erences �1 � �, �2 � � for both distributional components with

respect to implied Black/Scholes volatilities for series with �1 > 0.

case �1 = 0 they are identical. The expected underlying price S1 of the �rst lognormal

distribution clearly (again by construction) corresponds to low underlying prices since it

always lies below St. Therefore, a crash{o{phobia situation should be represented by the

�rst lognormal distribution.

The volatility �1 of the �rst component ranges from very low (0:01) to very high (0:96)

and is on average 0:22. The behaviour of implied volatility is analysed in greater detail

in Figure 6, which shows the volatility changes for both distributional components with

respect to the implied Black/Scholes volatility. The graph shows that �2 is always higher

than �, leading to a wider range for the distributional component corresponding to high

underlying prices when compared to the single lognormal distribution. For �1 two cases

are identi�ed. �1 can either be by approximately 0:7 higher than � or by approximately

0:2 lower than �. The interpretation follows from the properties of the Black/Scholes

formula which implies, that a portfolio of options is more expensive than a single option

written on the portfolio of the corresponding underlyings3 (St = �1S
1 + (1 � �1)S2):

C log(�1S
1 + (1� �1)S

2;X; �) � �1C
log(S1;X; �) + (1 � �1)C

log(S2;X; �):

3This follows from the convexity of the max operator. See Merton (90), S. 265. Following Merton, the

economic interpretation is that for options diversi�cation "hurts". Since diversi�cation reduces risk, only

lower option prices are obtained. I am grateful to my colleague Nicole Branger for giving me this hint.
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Figure 7: Time series for mixing weight �1 (left) and time series for share of downside risk

SDR (right).

Therefore, using the mixed lognormal formula with identical volatility as in the

Black/Scholes case leads to systematically higher option prices compared to Black/Scholes

prices. Since the second component always has a higher volatility, lower option prices may

only be achieved by reducing the volatility �1 of the �rst component. But the aggregated

e�ect on option prices also depend on the level of the weighting factor �1.

The mixing weight �1 equals the amount of probability mass attributed to low underlying

prices, which is on average 19% (table 6). Figure 7 (left) shows the time series of �1 for

options maturing in May 94. Until April 18, 1994 probability mass is allocated to low

underlying prices, leading to an implied probability distribution with two modes (�gure

10). The remaining parameters S1, S2, �1 and �2 for the May 94 contract are drawn in

�gure 8. As also shown earlier, S2 always lies above S by approximately 200 points when

�1 > 0. For the Black/Scholes case, both S and S2 are identical. Considering only values

where �1 > 0, S1 lies in the range of approximately 5% of the current underlying price.

Together with very low �1 values of approximately 0:5% a crash{o{phobia situation is

indicated.

The aggregated e�ect of all these parameter variations for the pricing of options can be

expressed by SDR, the share of downside risk. SDR indicates the contribution of the �rst

mixture component to total risk and consequently the importance of the �rst component

for the pricing of the options. Figure 7 (right) shows the time series of SDR. For the

estimation of SDR see appendix B.

Table 7 shows that SDR is on average 0:756. This means, that 75% of the risk associated
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Table 2: Descriptive statistics for the �nal sample with �1 > 0

Calls (132 series)

Variable Mean Std Dev Minimum Maximum

Na 13.59 4.68 6.00 23.00

Tb 121.29 63.36 7.00 260.00

MONEYc 0.0115 0.0696 -0.1561 0.2397

SPREADd 0.0715 0.0534 0.0082 0.7023

aNumber of observations per series. The total number of call price observations is 1794 .
bTime to maturity in days.
cRelative moneyness calculated for each individual option as (S�X)

X
with X as the exercise price and

S as the observed DAX price.
dMean relative spread calculated for each individual option as 2 (BAP-BBP)/(BAP+BBP) with BAP

(BBP ) as the best ask (bid) price.

C a l l s ,  M a t u r i t y  M A Y 9 4

9 4 0 2 2 1 9 4 0 3 0 3 9 4 0 3 1 3 9 4 0 3 2 3 9 4 0 4 0 2 9 4 0 4 1 2 9 4 0 4 2 2 9 4 0 5 0 2 9 4 0 5 1 2

C a l l s ,  M a t u r i t y  M A Y 9 4
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Figure 8: Time series for implied index values (left) and for implied volatilities (right).
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Table 3: Call option pricing errors

Variable Mean Std Dev Minimum Maximum

Option prices (7263 observations)

Cmix � Ca -0.3042 3.5941 -77.6279 31.8922

(Cmix � C)=C 0.0214 0.1090 -1.8329 1.2786

C log � Cb -0.4702 3.9566 -77.6279 37.2392

(C log � C)=C 0.0317 0.1061 -0.8326 1.2786

Cmix � C logc 0.1659 2.9541 -26.1129 14.0496

(Cmix � C log)=C log -0.0071 0.0665 -1.5560 0.1166P
(Cmix � C)2 �P

(C log � C)2d -42.90 117.84 -1082.41 0

aDi�erence between theoretical mixed lognormal and observed option prices (midpoint between bid

and ask).
bDi�erence between theoretical Black/Scholes and observed option prices (midpoint between bid and

ask).
cDi�erence between theoretical mixed lognormal and Black/Scholes option prices.
dDi�erence of Sum of squared pricing errors between mixed lognormal and Black/Scholes option prices.

First the sum of squared pricing errors
P
(Cmix

�C)2,
P
(Clog

�C)2 is calculated for each series. Then

the di�erences of these values are calculated for all series in the sample.

with the mixed distribution emerge from the additional distributional component corre-

sponding to low underlying prices. Comparison to the minimum (� 0) and maximum

(= 0:916) value of SDR shows, that the pricing of options is mainly improved for high

levels of SDR. Consequently, the mixed lognormal distribution improves the pricing of

DAX index options with additional probability mass in regions of low underlying prices.

Therefore it seems, that investors expect a large decline of underlying prices to be possible

with strictly positive probability.

The shape of the corresponding implied probability distribution will be analysed later.

First, considering the valuation of the May 94 contract, �gure 9 (left) shows that under

the mixed lognormal distribution, valuation is only improved until approximately one

month prior to maturity. The same result can be observed for other contracts. Therefore,

the additional probability mass attributed to low underlying prices not only shows re-

actions to extreme events (as shown by Melick/Thomas (97) during the gulf crisis) but

also expresses the uncertainty about future underlying price evolutions which grow with

maturity. Options with lower maturity can be priced using the Black/Scholes formula, be-

cause there is not much volatility uncertainty nor is there much probability for a crash in
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Table 4: Call option pricing errors for �1 > 0

Variable Mean Std Dev Minimum Maximum

Option prices (1794 observations)

Cmix � Ca 0.1032 3.9786 -26.2820 18.1786

(Cmix � C)=C -0.0082 0.1089 -1.8329 0.1777

C log � Cb -0.5686 5.2078 -36.8405 37.2392

(C log � C)=C 0.0336 0.1025 -0.1803 1.0964

Cmix � C logc 0.6718 5.9165 -26.1129 14.0496

(Cmix � C log)=C log -0.0291 0.1315 -1.5560 0.1166P
(Cmix �C)2 �P

(C log � C)2d -157.6397 181.8703 -1082.41 -0.0079

aDi�erence between theoretical mixed lognormal and observed option prices (midpoint between bid

and ask).
bDi�erence between theoretical Black/Scholes and observed option prices (midpoint between bid and

ask).
cDi�erence between theoretical mixed lognormal and Black/Scholes option prices.
dDi�erence of Sum of squared pricing errors between mixed lognormal and Black/Scholes option prices.

First the sum of squared pricing errors
P
(Cmix

�C)2,
P
(Clog

�C)2 is calculated for each series. Then

the di�erences of these values are calculated for all series in the sample.

the remaining time. Figure 9 (right) shows the sum of squared pricing errors between the

mixed lognormal and Black/Scholes formula with respect to maturity. For the last thirty

trading days, there is no pricing di�erence between mixed lognormal and Black/Scholes

option prices.

So up to now, two shortcomings of the Black/Scholes model are avoided when using

the mixed lognormal model. First, the constant Black/Scholes volatility is replaced by a

randomly changing volatility (�1 and �2 with probability �1 and (1��1)) under the mixed

lognormal model, leading to improved prices for options with later maturities. Second,

the strange Black/Scholes pricing pattern with respect to the moneyness of the options

(which is also related to the volatility smile) disappears when using the more exiblemixed

lognormal distribution. The analysis shows, that this shortcoming of the Black/Scholes

model is eliminated under the mixed lognormal distribution by the additional probability

mass of the �rst mixture component in regions of low underlying prices. The shape of these

distributions and its pricing implications for options are considered in the next section.
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Table 5: Estimated parameters for the mixed lognormal model

Variablea Mean Std Dev Minimum Maximum

Index values (485 observations)

Sb 2152.56 67.5592 1967.36 2274.00

S1c . . . .

S2d 2303.75 378.46 1967.36 5343.71

�1
e 0.0528 0.1093 0 0.5999

Implied volatilities (485 observations)

�logf 0.1983 0.0182 0.1532 0.2478

�mix
1

g . . . .

�mix
2

h 0.2535 0.1260 0.1532 0.9189

aThe estimated values for S1 and �mix
1 are omitted because for cases with �1 = 0 they distort the

results.
bObserved DAX price.
cImplied DAX price for the �rst component of the mixed lognormal distribution.
dImplied DAX price for the second component of the mixed lognormal distribution.
eMixing weight for the mixed lognormal distribution.
f Implied volatility using the Black and Scholes model.
gImplied volatility for the �rst component of the mixed lognormal distribution.
hImplied volatility for the second component of the mixed lognormal distribution.

C a l l s ,  M a t u r i t y  M A Y 9 4
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Figure 9: Time series of di�erence between mixed lognormal and Black/Scholes sum of

squared residuals (left) and di�erence between mixed lognormal and Black/Scholes sum

of squared residuals with respect to maturity (right).
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Table 6: Estimated parameters for the mixed lognormal model with �1 > 0

Variable Mean Std Dev Minimum Maximum

Index values (132 observations)

Sa 2164.96 73.1503 1983.27 2274.00

S1b 154.26 242.55 1.00 1801.00

S2c 2720.44 526.80 2118.49 5343.71

�1
d 0.1939 0.1286 �0 0.5999

Implied volatilities (132 observations)

�loge 0.1937 0.0170 0.1710 0.2326

�mix
1

f 0.2164 0.3714 0.0100 0.9610

�mix
2

g 0.3964 0.1717 0.1979 0.9189

aObserved DAX price.
bImplied DAX price for the �rst component of the mixed lognormal distribution.
cImplied DAX price for the second component of the mixed lognormal distribution.
dMixing weight for the mixed lognormal distribution.
eImplied volatility using the Black and Scholes model.
f Implied volatility for the �rst component of the mixed lognormal distribution.
gImplied volatility for the second component of the mixed lognormal distribution.

Table 7: Estimated crash{o{phobia parameters for the mixed lognormal model with �1 > 0

Variable Mean Std Dev Minimum Maximum

Index values (132 observations)

S � Smix
1

a 2010.70 271.85 347.09 2273.00

(S � Smix
1 )=S 0.9276 0.1139 0.1616 0.9996

SDRb 0.7565 0.1376 �0 0.9161

aDi�erence between observed and implied DAX price of the �rst component of the mixed lognormal

distribution.
bShare of downside risk.
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Figure 10: Implied probability distribution for the Black/Scholes (dotted line) and mixed

lognormal model corresponding to the call prices at February 25, 1994 maturing in May

94.

4.3 The mixed lognormal probability distribution

Only for �1 > 0 the distributions underlying the Black/Scholes model and the mixed log-

normal model di�er. Figure 10 shows a typical implied probability distribution for both

the Black/Scholes and the mixed lognormal model. The shape of the probability distribu-

tion shows, that compared to the Black/Scholes formula, probability mass is attributed

to low underlying prices and the main part of the probability mass is shifted to the right.

Before interpreting the shape of the probability distribution, the implications for the

valuation of call options are considered. For calls, only the probability mass to the right

of the exercise price is relevant for pricing. Since the empirically observed exercise prices

are concentrated around the observed underlying price, the probability mass �1 reduces

the prices for all call options in the sample, because all options are out of money there.

This e�ect can be o�set by the shift of the remaining probability mass to higher underlying

prices. Consequently, one has to be careful with the interpretation of the �rst mixture

component, because this part of the distribution does not contribute directly to call option

prices. Therefore, the second crash{o{phobia mode is not an indication of underlying
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prices falling to a level of 200 in case of a crash. The second mode may rather be interpreted

as a risk premium for the general possibility of falling prices expressed in probabilistic

terms. This interpretation is also con�rmed by the comparison of the mixed distribution to

the nonparametric underlying probability distribution calculated using Rubinstein's (94)

method. First tests show, that crash{o{phobia situations are almost always exaggerated

by the mixed distribution, because two mixture components are not su�cient to represent

the markets probability assessments correctly. But further empirical research is needed to

verify this assertion.
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5 Summary and conclusion

The poor empirical result of the Black/Scholes model motivated the construction of an

option pricing model with a mixed probability distribution. For the mixture of two lognor-

mal probability distributions, the corresponding option pricing formula is simply a linear

combination of Black/Scholes option prices. Nevertheless, the restrictive assumption of

a constant volatility under the Black/Scholes model is avoided when using the mixed

lognormal model. The mixture of lognormal distributions implies a randomly changing

volatility and a exible shape for the underlying price distribution. The additional pa-

rameters �1, S
1 and �1 of the distribution represent the uncertainty of future underlying

price decreases. To calculate the contribution of the �rst mixture component to total risk,

the share of downside risk SDR is de�ned. Since the Black/Scholes formula is a special

case of the mixed lognormal formula, the latter explains observed option prices at least

as good as the former.

The empirical investigation shows that for most times the Black/Scholesmodel is adequate

for the pricing of DAX index options. But in 25% of the cases the mixed lognormal formula

improves the explanation of observed option prices by shifting probability mass to regions

of low underlying prices. In these cases the systematic overpricing for out of money calls

and the systematic underpricing for in the money calls under the Black/Scholes model is

avoided when using the mixed lognormal distribution. The better pricing performance of

the mixed lognormal model is an implication of the more exible shape of the underlying

mixed probability distribution.

Several questions are adressed to further research:

� First, put options should be included for the empirical investigation. Since for puts

the probability mass attributed to low index levels is much higher than for calls (see

Neumann/Schlag (96)), the valuation of puts should improve signi�cantly under a

mixed probability distribution.

� Second, the implied probability distributions should be analyzed in greater detail.

Especially the �t of the mixed lognormal distribution to the data should be ex-

amined. Therefore, the mixed distribution can be compared to the nonparametric

underlying probability distribution calculated, for example, using Rubinstein's (94)

method. The latter comparison shows, whether the mixed lognormal distributions

shape is exible enough to represent the markets probability assessments correctly.

In the case of bad representation more mixture components with multiple modes

must be considered.
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� Third, the price process(es) which are compatible to the mixed lognormal distribu-

tion should be considered. The question is, whether jump di�usion models, stochastic

volatility models or models with deterministically changing volatility are compati-

ble to a mixed lognormal distribution. The identi�cation of the corresponding price

process is important especially for the valuation of American options.



Option Pricing under the Mixture of Distributions Hypothesis 25

A The volatility of the mixed probability distribu-

tion

In Section 2 we consider the mixed probability distribution fmix
Q for the underlying price

ST which consists of the two distributional components f log1 and f log2 :

fmix
Q (ST ) = �1f

log
1 (ST ) + (1� �1)f

log
2 (ST ): (1)

For the expected value of the mixed distribution we calculate

EQ(ST ) =
Z
1

�1

STf
mix
Q (ST )dST

= �1E
Q1(ST ) + (1� �1)E

Q2(ST ): (2)

Therefore, the expected value of the mixed distribution is a linear combination of the

expected values of its distributional components.

The variance of the mixed distribution can be calculated using the relationship

V arQ(ST ) =
Z
1

�1

(ST � EQ(ST ))
2fmix

Q (ST )dST :

Inserting equation (1) results in

V arQ(ST ) = �1

Z
1

�1

(ST�EQ(ST ))
2f log1 (ST )dST+(1��1)

Z
1

�1

(ST�EQ(ST ))
2f log2 (ST )dST :

(3)

Now inserting EQ(ST ) from equation (2) and performing simple calculations we achieve

V arQ(ST ) = �1

Z
1

�1

(ST � �1E
Q1(ST ))

2f log1 (ST )dST

+(1 � �1)
Z
1

�1

(ST � (1 � �1)E
Q2(ST ))

2f log2 (ST )dST

+
�
�1E

Q1(ST )� (1 � �1)E
Q2(ST )

�2

�
�
�3
1E

Q1(ST )
2 + (1� �1)

3EQ2(ST )
2
�
:

Further calculations lead to

V arQ(ST ) = �1 � EQ1(S2
T ) + (1� �1) � EQ1(S2

T )

��2
1 � EQ1(ST )

2 � (1� �1)
2 � EQ2(ST )

2

�2�1(1 � �1)E
Q1(ST )E

Q2(ST )

Now using E(x2) = V ar(x) + E(x)2 �nally leads to

V arQ(ST ) = �1 � V arQ1(ST ) + (1� �1) � V arQ2(ST )

+�1 � (1 � �1)
�
EQ1(ST )� EQ2(ST )

�2
:

For an interpretation of this formula see section 2.
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B Empirical estimation of the parameters of the

mixed probability distribution

In our empirical study we estimate the parameters S1
t , S

2
t , �1, �2 and �1 implicitly from

the mixed option pricing formula. These values can be used to calculate the parameters of

the mixed probability distribution. Therefore, we use the following relationship between

the variance of the lognormally distributed underlying asset price and the volatility �

under the risk neutral measure for the component distributions:

V arQi(ST ) = (Si
t)
2 � e2r(T�t)

�
e�

2
i (T�t) � 1

�
; i = 1; 2:

Consequently, the variance with respect to the parameters of the pricing formula is:

V arQ(ST ) =
�
�1 � (S1

t )
2(e�

2
1(T�t) � 1) + (1 � �1) � (S2

t )
2(e�

2
2(T�t) � 1)

+�1 � (1� �1)
�
S1
t � S2

t

�2 �
e2r(T�t):
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